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Chapter 13 Vector Analysis

IN TH!S SECTION

Figwre 111 A wind-velocity map of
the Atlantic Ocean

Figere 13.2 The graph of the vector
field Fix, y) = yi — xJ

V

Properties of a Vector Field: Divergence and € url

definition of a vector field, divergence, curl

PEFINITION OF A VECTOR FIELD

The satellite photograph in Figure 13.1 shows \'mm! |1‘cu‘surclf;‘;f“_“, i the Atlangj,
Ocean. Wind dircction is indicated by directed I.mL' -\LS“'L“:"- s I"‘ an Xample of ,
vector field, in which every point in a given region of the plane or space i assigneg ,
vector, Here is the definition of a vector field in B,

A vector field in R is a function F that assigns a vector to each point in jis
. . v . ; . . f,
domain. A vector field with domain £ in B” has the form

F(x, y, z) = M(x, y, i+ N(x, y, 2+ Plx, y, 2)k

where the scalar functions M, N, and P are called the components of F. A
continuous vector field F is one whose components M, N, and P are continuous,

—d

For example,

F = 2x%yi+ e j+ (tan %) k

)z X
is a vector field with i-component 2x”y, j-component ¢'*, and K-component tan 3

A vector field in R? can be thought of as a special case where there are no
z-coordinates and no kK-components. That is, a vector field in 2% has the form

F(x, y) = M(x, y)i+ N(x, v)j

To visualize a particular vector field F(x, y, 2), it often helps to select a number of
points in the domain of F and then draw an arrow emanating from each point P(a, b, c)
with the direction of F(a, b, ¢) and length representing the magnitude || F(a, b, c)]. We

will refer to such a representation as the graph of F. Here is an example involving the
graph of a vector field in %,

EXAMPLE 1 Graph of a vector field
Sketch the graph of the vector field F(x, y) = yi — xj.

Solution
We will evaluate F at various points. For example,

F(3,4) = 4i - 3j and F(=1,2) =2l = (=1)j =2l +}

We can generate as many such vector values of F as we wish. Several are shown I2
Figure 13.2. 8

The graph of a vector field often yields useful information about the propertics ¢
the field. For insl&{ncc. suppose F(x, v) represents the velocity of a compressible fluid
(like a gas) at a point (x, y) in the plane, Then F assigns a velocity vector 1o ach point
in the plane, and the graph of F provides a picture of the fluid flow. Thus, the flow "
Figure 13.4a is a constant, whereas Figure 13 4h suggests a Cil't.‘lllitl'. oW,

Gravitational, electrical, and magnetic vecior fields p‘]uy an important role in phy¥
ical applications. We will discuss gravitational fields l‘;OW and electrical and magnet
fields later in this section. Accordingly, we begin with I'\lcwmn's law of gmvilulil‘"-
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Figere 134 Flow diagrams

which says that a point mass (particle) m at the origin exerts on a unit point Mass
located at the point P(x, y, z) a force F(x, v, z) given by

F(x,y,2) = u(x, y,z)

Gm
x2 + y2 422

where G is a constant (the universal gravitational constant) and u is the unit vector
extending from the point P toward the origin. The vector field F(x, y, z) is called the
gravitational field of the point mass m. Because

(xi+ vj+ zk)

-1
ulx, y,2) = —
Vxi+y2 + 2

it follows that
-G
ot Sadprt

3

F(x,y, z) =

(xi+ vj + zk)

Note that the gravitational field F always points toward the origin and has the same
magnitude for any point m located r = /x* + y* + z% units from the origin. Such a
vector field is called a central force field. This force field is shown in Figure 13.5a
Other physical vector fields are shown in Figures 13.5b and 13.5¢, ‘
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a. A central force field
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b. Air flow vector field ¢ Wind velocity on a map

Figwre 13.§  Examples of physical vector fields
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Divergence

WERNING 3
The divergence of a vector

field is a scolar function

divD>0

N
- O -
/T\
Fluid fMows from a source poinl.
divD <0

S ra
A

Fluid flows toward a sink poini.

divD=0

.,
X
ot

Fluid is incompressible.

Figwe 13.6 Flow of a fluid across
a plane region, D

: 'UH

Divergence and curl are two operatio
be defined as follows.

with the study of fluid flow. Divergence may

The divergence of a vector field
Vix, v, 2) = ulx, y, 2)i + vlx, Yy, 2)j+ wix, y, 2)k

is denoted by div V and is given by

- du du Jw
divV = —(x,v,2) + —(x,y, 2+ —&x, »
Y Ak dy iz

C <

&)
—

EXAMPLE 2 Divergence of a vector field
Find the divergence of each of the following vector fields.

a. F(x,y) = x%yi+xy%
b. G(x,y,2) = xi+ y’2%j + x2°k

Solution

d d
a. divF = — z _— 2y = 2
v ax(l’ y) + ay(X) ) = 2xy + 3xy

d d d
b. divG = — —(PA+—() = 222 2
v ax(x)+ ay(y e o aZ(Jtz y=1+3y"z" + 3xz 8

Suppose the vector field
Vix,y,2) = ulx, y,2)i+v(x, y, 2)j + w(x, y, 2)k

rep‘rc:;ents the velocity of a fluid with density §(x, y, z) at a point (x, y, z) ina certain
region R in R®*. Then the vector field 8V is called the flux density az-id is denoted by
D. We can ?hink of D = 4V as measuring the “mass flow” of the liquid.

Assuming lhere_a:e‘ no external processes acting on the fluid that would tend 10
create or destroy fluid, it can be shown that div D gives the negative of the time ¢
change of the density, that is,

diyDis— 22
dt
This is often referred to as the continuity equation of fluid dynamics. (A derivation is
greca S'i““m‘ '3-7-)1}“"”‘6" divD = 0, D is said to be incompressible. If divD >
at a point (xg, yo, Zo), the point is called a source: if divD AN
o i i ; < 0, the point is call¢
s‘ink (see Figure 13.6). The terms sink, source, and incompressible apppl(; to any vector
ficld F and are not reserved only for fluid applications
A useful way to thi i . 2y
Pl y to think of the divergence divV is in terms of the del operalo”
d 9 .
Ve —dp opp 2
ax i)yj + 72 k
Recall (from Section 11.6) that applying (h : (ion
e : able fun¢
£(x. y, z) produces the gradient field 2 the del operator to the differentiable
P -
¥

af
dx J k

9z




Curl

VRN NG e
s Notice that div V is @
“9%ond curl V is a vector.
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Similarly, by taking the dot product of the operator V with the vector field

V = u(x, y, i+ v(x, y, 2 +wlx, ¥, 21k, we obtain the divergence

V.-V

Il

{ ' d A ;
(.—’—i‘f ij+ _;_k) Aui 4+ vj + wk)

d d ]
= ——(u‘) + 5;([)) + ().'_(w}

dx

du v ﬂl_f
= 5: + 5:; + 9z
=divV

CURL

The del operator may also be used to describe another derivative operation for ve

fields, called the curl.

The curl of a vector field
Vix, v, 2) = ulx, y, i+ v(x, y, D + wlx, ¥, 2k
is denoted by curl V and is defined by

- dw  dv du Jw av au)
O du ow\, v du\e
| curl V (ay az)1+ (az 8x)'l+ (ax 3y

ctor

Note that

cuer—(aw EJ-)l (aw—-a—u-)'ﬁ-(a—v—-au k
“\dy 9z b ) T \ex oy

i i k « Standard basis vectors
= _3_ _3_ e — V
ax dy -9z
v «— V

=V xV

The determinant form of curl V is a convenient device for remembering the definition

and is helpful in organizing computations.

Del Operator Forms for Divergence and Curl
Consider a vector field

Vix,y,2) = ulx,y, i+ vix, y,2)j + wix, y, 0k
The divergence and curl of V are given by

divV=V.V and curlV=¥V xV

EXAMPLE 3 Curl of a vector field
Find the curl of each of the following vector fields:

F=x'vzi+xy’zj + xyz’k and G = (x cos y)i + xy’j
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WAEKING Example 4 shows that the

divergence and curl of a constant vector
field are zere, but this dees nol mean
thot ifdivF = 0 and curl F = 0, then
F must be a constant. For instance, the
nonconstant vector field

Flx,v.z) =xi+ vj—2:zk

has both divF = 0 ond curlF = 0

Nolation
i i k
a ad J
curl F = o sl
ax ay az
)
x2yz xy*z xyz’
i d » "
7] 2 It b 1 Yo S _r_x ZZ__ _Xﬁ},z)]
_(.T,. =R “)' (f’Jx S
d
+ rr-)—.lyz.-". - —xzvz) Kk
dx
2 2
= (x2? — xy)i+ %y — y2)i+ Oz —x"2k
i J k
d d d
curlG=| — o
dx dy 9z

xcosy xy* 0

X 8 .1 P ] [a g ]
= e = o ) 4+ | —xy*— —(xcosy) |k
0 Yl ]l [0 az(xcos)) J y 3y

&l

k z dx
= (y* + xsiny)k
EXAMPLE 4 A constant vector field has divergence and curl zero
Let F be a constant vector field. Show that divF = 0 and curl F = 0.
Solution
Let F = ai + bj + ck for constants a, b, and ¢. Then
: ] d ]
divF = —(a) + —(b) + —(¢) =
Bx(a) 3y( )+az(c) 0
i ¥ . &
a a3 9
oriF=il_* = Bl 66 2 (]
Pl T 0i —0j+ 0k =0
a b c
TECHNOLOGY NOTE

micsa 2w ill carry out most vector operations. For
= X+ y%22j + xz3K, and use one of these programs:
Div[x, y*2?, xz*]

Derive, Maple, MATLAB, and Mathem
Example 2, we define G(x, v, z)

simplifies to  3y,2 4 3y’ +1
You may need to enter a zero, as with F(y ¥) = x?yi + xy%j, as shown here:
Divix®y, xy*, 0]

Finally, consider the vector field F
can find the curl:

simplifies 1o x(3y* +2y)
from Example 3, p — yzi + xylzj + xyik W

2 2 i
Curllx“yz, xy*z, xy2%)  simplifies o [%(2% = y2), y(x? = 22, 207 = 5

x 4_____-/




e Lapiocion Operttor

The laplacion is named for the French
mathematicion Pierre Laplace
1749-1827). See the Historical
Quest, Section 12.3, Problem 62.
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Combinations of the gradient, divergence, and curl appear in a variety of applica-
tions. In particular, note that if f is a differentiable scalar function, its gradient V f is
a vector field, and we can compute
] i i gf .. B, B
divVf = [ —I4 — +-,—k)-(7—i+,— + =k
i (n.r AT o Ty’ oz

if 8#f f

= e e —— o} =
ax?  9y? 8zt
=V.Vf
In the following box, we introduce some special notation and terminology for this
operation,

Let f(x, v, 2) define a function with continuous first and second partial deriva-
tives. Then the Laplacian of [ is

atf E}Zf f .
I ' xx yy ZZ
ax2 "~ 3yr 37 % f fa

Vf=V.Vf=

The equation V> f = 0 is called Laplace’s equation, and a function that satisfies
such an equation in a region D is said to be harmonic in D.

L P

EXAMPLE 5 Showing a function is harmonic
Show that f(x, y) = ¢* cos y is harmonic.

Solution felx,y) =€"cosy and fi.(x,y)=¢e"cosy
fy(x,y)=—€"siny and f,,(x,y)=—e"cosy

The Laplacian of f is given by

Vi@, y) = fux(x, 3) + fry(x, ¥) fe=0
=e"cosy—e‘cosy=0
Thus, f is harmonic. )

VECHNOLOGY NOTE

Derive, Maple, MATLAB, and Mathematica will find the Laplacian of a given function.
For Example 5, we obtain

LAPLACIAN(e" cos(y), [x, y]) which gives 0
If you have access to this technology, verify that
LAPLACIAN(x?y*z, [x, y,z]) vyields 6x’yz + 2y’z

In many ways, the study of electricity and magnetism is analogous to that of fluid
dynamics, and the curl and divergence play an important role in this study. In electro-
magnetic theory, it is often convenient to regard interaction between electrical charges
as forces somewhat like the gravitational force between masses and then to seek quan-
titative measure of these forces,

One of the great scientific achievements of the nineteenth century was the discov-
ery of the laws of electromagnetism by the English scientist James Clerk Maxwell (see
Historical Quest, Section 13.7, Problem 32). These laws have an elegant cxprcss:mn
in terms of the divergence and curl. It is known empirically that the force acting on a
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i fiold depends on the position, velocity, and ,
Chicgs doa 40,0, 6l6CITIAEAELS o r:;r[:bcr of other charges that may be Presr:w n

. ; . - nt
of the particular charge, and not on the se & charge is located at the poing e or
how those other charges are moving. SUppos )

. intensity field E(x, y, z, ) and the Magney. -

I " ider the electnc intensity fi s . C in.

:ﬂ |1_':1c t:.lgn;ll(ulnn‘sul r, )‘ Then the behavior of the resulting electromagnetic fiel is
ensity hie Xy ML)

determined by

divE = 2 div(uH) =0
"2 2 _E_J
curl E = _E(MH) c“(curl B) = e

tric charee density (charge per unit vqlumc). J is the elecrnc‘ cur.
’\::fﬁsz;;l(h:“:l:t; which u'fe charge ﬂow.s through a unit area per sc;cond). B is e
magnetic flux density, ¢ is the speed of light, il_nd Iz _ﬂﬂd € arc constants called u*
permeability and permittivity, respectively. W(_)rkmg with these equat:onsfand terms g
beyond the scope of this course, but if you are interested there are many re erences yoy
can consult. One of the best (despite being almost 40 years old) is the classic Feyn.
man Lectures in Physics (Reading, Mass.: Addison-Wesley, 1963), by Nobel laurey,

Richard Feynman, Robert Leighton, and Matthew Sands.

13.1 PROBLEM SET

X
o 1. Explorotion Problem Discuss the del operator and its use in 26. F= (In2)i+¢"j+ tan™' (;) k

computing the divergence and curl. o g -y
2. Exploration Preblem Discuss the difference between a vector e i e
valued function and a vector field. 28 Fo Mtyi+zk
In Problems 3-6, find divF and curl F for the given vector func- Vx4 y? 4 22
rion. Determine whether each scalar function in Problems 29-32 is har-
L Fx,)=xYi+xyj+2’k 4 F(x,y) =i+ 2+ v monic.
5. F(x,y,2) =2yj 6. Flx,y,2) =zi—j+2yk 29. u(x,y,2) = e *(cos y — sin y)
In Problems 7-12, find divF and curl F for each vector field F at 30. v(x,y,z) = (x2 + y2 422
the given point.

3. wix, y,2) = (x2 + y? 4 z2)-12

7. Fx,y, ) =i+j+kat(2,-1,3)
] 32. r(x.y,z)=,;-y;_

8. Flx,y, 2) =xzi+ y'zj+xzkat (1, —1,2)
9. Fix,y,2) =xyzi+ yj+xkat(l,2,3) 3. Shﬂ\\f;:lat the \:ectgr field B = y?zi + xz2°j 4+ y 'k is incom-
10. Fix, y, 2) = (cos y)i + (sin y)j + k at (¥, ,0) pressible (that is, div B = 0),

1L Fix,y.2) = e i+ ) + ekt (3,2, 0) 34. Find divF, given that F = V., where f (x, y, 2) = 1y'¢"

12. Fx, y,2) = (e " siny)i+ (e * cos y)j + kat (1,3, —2) 35. Find div F, given that F = V f,where f(x,y,z) =1’y

Find divF and curl F for each vector field F given in Problems 36. IfF(x, y, 2) = 21 4 2xj+3ykand G(x, y, z) = xi—yj+ &

13-28 find curl(F x G). 3

13. F=(sinx)i+(cosy)j 14, F = (~cos )i + (sin y)j 3. 0F(x, y, 2) = X¥i+yzj+ 2’k and G(x, y, z) = xi+yj-k

15. F=xi—yj 16. F = —xi + yj find curl(F x G).

v ¥ I8 IRy - *
17. F = i £, 2) =242 ), 2) = xi-yj+k
i+ v Vi + yzj find div(F x G). WhUkaGang-n-

18. F = 1% - 4 3. IfF(x, y, 2) = ryjy 2 -k
1 ¥2) = x yzi+ 2%k and Y. 2) =xi+y)-

19. F = axi+ byj + ck for constants a, b, and ¢ o find div(F x G), it uy

20. F = (¢* sin y)i + (' cos y)j + k 40. Let A be g constant vect Show
: or and = + k.

2L F=x%i4 yj+ 2k WA By o

22. F=yi+zj+ 1k 41. Let A be a constan ve Sho¥
: ctor and let R = xi + yj + 2k

23. F=axyi+ yzj + xzk that curl(A x 0 e 2A. X Vi

24. F =20zl +2y2%) ~ k s ;";) = UCx, y)i + u(x, y)J, show that curl F = 0if 2

25. F = xyzi + x*y' 2% 4 22k only if =% _ dv

dy  ax'




& Consider a rigid body that is rotating about the z-axis (coun-
jockwise from above) with constant angular velocity
= al + bj + ¢k 1f P is a point in the body located at
R = a1+ yj + 2k the velocity at P is given by the vector field
V=X R
o ExpressV in terms of the vectors i, j, and k.
p. Find div V and curl V.

Problem IfF =.(f. . h) is an arbitrary vector field
whose components are twice differentiable, what can be said
ahout curl(curl F)?

4. Which (if any) of the following is the same as div(F x G) for
all vector fields F and G?

1 (divF)(divG)
i urdF) -G =F- (curlG)

. Fidive) + divhG
V. (cul F) -G +F - (curl G)

in Probiems 46-55. prove the given property for the vector fields
f and G. soalar ¢, and scalar functions [ and g. Assume that all
rquired partial derivatives exist and are continuous.

&% divicF) = cdivF

. §vF+G)=divF +divG

& cwlF+G) =culF +curl G

8. curl(cF) = ccurd F

132 leehtegs 867

80, curd(fF) = feudF+(V/S x F)

51 divi/F) :j’dl\F+fV/-Fj

82, curl(V [ + curl F) = curl(V f) + curl(curl F)

£3. div(fVg) = fdiv Ve+V/-Vz

84, The curl of the gradient of a function is always 0. That is,

vx(V/f) =0
85, The divergence of the curl of a vector field is 0. Tha is,

divicurl F) = 0.

o!n Problems 56-60, R = (x, ¥.2). and

r = IRl = /3% + y* + 2. In each case, verify the given identity

or answer the question.
56. curl R = 0; what is div R?

s%. div(-l—lt)=0 s&m(-’-n)=o
r 3
2
59. div(rR) = 4r 60. div(Vr) =~

61. Exploration Problem State and prove an identity for
div(V(fg)). where fandgmdiﬂumblcsalzfumﬁom

of x, y,and z.

62. Counterexample Problem Let F = (x%y, y=°. 2" ). Either find 2
vmorﬁeldGsuchde:cle.orshowthﬂnosndaG

exists.

122 Line Integrals

1N THIS SECTION  definition of a line integral; line integrals with respect o x, v, and =; line integrals of
vector fields; applications of line integrals: mass and work ;
A line integral is an integral whose integrand is evaluated at points along a curve in
B2 orin B*. We will introduce line integrals in this section and show how they can be
used for a variety of purposes in mathematics and physics.

'
':::;?n curve C partitioned

DEFINITION OF A LINE INTEGRAL

Let C be a smooth c.u.lrvc.-with parametric equations x = x(1), y = y(t), z = z(r)
for a < t < b, that lies within the domain of a function f(x, v, z). We say that C is
orientable if it is possible to describe direction along the curve for increasing 7
K ':')ohdelline gfh l:snc IT:gml. we begin by partitioning C into n subarcs, lhe.kth of
which has len s Let (x], v/, z}) be a point chosen arbitrarily from subarc
* (see Figure 13.7). Form the Rieman; sum I ; s

Z: Sxg, ¥, 2 Asy

k=]

and let || As|| denote the largest subarc length in the partition. Then, if the limit

n
,j}{'},og fO3. 3. 2D As,

exists, we call this limit the line integral of f over C and denote it by / flx,y, 2)ds
e » s -



