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2 64. Suppose the surfaces F(x, ¥,2) = 0and G(x, y, z) = 0 both
pass through the point Py(xo, Yo, 2o) and that the gradients

»w that Vr is a unit vector in the direction of R. o gl hlggr
a. She ‘ e direc V Iy and VG both exist. Show that the two surfaces are tan-
p. Show that V(r") = nr" "R, for any positive integer n. gent at Py if and only if VFy x VG, = 0,

1.7 Extrema of Functions of Two Variables

IN THIS SECTION

Absoivte Extrema

beictive Extrema

relative extrema, second partials test, absolute extrema of continuous functions, least
squares approximation of data

There are many practical situations in which it is necessary or useful to know the
largest and smallest values of a function of two variables. For example, if T(x, y) is
the temperature at a point (x, y) in a plate, where are the hottest and coldest points
in the plate and what are these extreme temperatures? If a hazardous waste dump is
bounded by the curve F(x, y) = 0, what are the largest and smallest distances to the
boundary from a given interior point P;? We begin our study of extrema with some
terminology.

The function f(x,y) is said to have an absolute maximum at (xy. vy) if
f(xo, vo) = f(x,y) forall (x,y) in the domain D of f. Similarly, f has an
absolute minimum at (xo, vo) if f(xo, vo) < f(x. ) forall (x, y) in D. Col- |
lectively, absolute maxima and minima are called absolute extrema. !
i

In Chapter 4, we located absolute extrema of a function of one variable by first
finding relative extrema, those values of f(x) that are larger or smaller than those at
all nearby points. The relative extrema of a function of two variables may be defined

as follows.

[

Let f be a function defined on a region containing (xg. vo). Then
f(x0. yo) is a relative maximum if f(x, y) < f(xy, yo) forall (x, v) in an
open disk containing (xq, o).
f(xq, yo) is a relative minimum if f(x, y) > f(xq, vo) for all (x. v) in an
open disk containing (xq, yg).

Collectively, relative maxima and minima are called relative extrema.

G ¢

RELATIVE EXTREMA

In Chapter 4, we observed that relative extrema of the function f correspond to “peaks
and valleys™ on the graph of f, and the same observation can be made about relative
extrema in the two-variable case, as seen in Figure 11.37.

For a function f of one variable, we found that the relative extrema occur where
fx) = 0or f(x) dqcs not exist. The following theorem shows that the relative
extrema of a function of two variables can be located similarly.
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Relative
maxima

Relative
minimum —__
(valley)

Figwe 1137 Relative extremd correspond o peaks and valleys

ive criteria for relative extrema
P,(xg. yo) and partial deriva-

THEOREM 11,11  Partial derivat
If / has a relative extremum (maximum or minimum) at
tives f, and £, both exist at (xg, yo), then

fe(x0, o) = fy(x0, yo) =0

Proof Let F(x) = f(x, yo). Then F(x) must have a relative extremum at x = xg,
o0 F'(xg) = 0, which means that f,(xo, Yo) = 0. Similarly, G(y) = f(xo.») has a
relative extremum at y = yo, 50 G'(yo) = 0 and f,(xo, Yo) = 0. Thus, we must have
both f,(xg. yo) = 0 and f,(xo, Yo) = 0, as claimed. 0

WARNING There is a horizontal fangent plane at each extreme point where the first partiol
derivalives exist. Howaver, this daes mot say that whenever a horizontal tangent plane occurs
at o point P, there must be an extremum there. All that can be said is that such a point P isa
possible location for a relative extremum.

In single-variable calculus, we referred toa number x5, where f'(xg) does not exist
or f'(xq) = 0 as a critical number. This terminology is extended to functions of two
variables as follows.

g E 3 =3
\

A critical point of a function f defined on an open set D is a point (xg, vo) in D
where either one of the following 1s true:

a. fi(xo, yo) = fy(x0, ) = 0.

b. Atleast one of f,(xo, yo) or f,(xo, yo) does not exist at (xy, vy).

EXAMPLE 1 Distinguishing critical points

Discuss the nature of the critical point (0, 0) for the quadric surfaces
2

7 = x2 )2 RES DAY 2
a zZ=x%+)Yy b.Z—l Xt —y c-:-_-:_\'z—.\-:

Solution

The graphs of these quadric surfaces are shown in Fi

ol BN i ' in Figure 11.38. Let f(x. v) = X2+ V>
g ) = 1= 5" = 3% ondh(x, 3) =y - 2 We find the cﬁlictzilj[;g;r;l'l~) S

a. £i;§;li‘;:n:a[2:d 6‘(1- y) a0 ?i\'; cn'tic‘al point (0, 0). The functi a relative
, 0) because x* and y? ction f has a relat

= are b e ) . 3
for all nonzero x and y. Oth nonnegative, yielding x* + y* > 0
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s
L7 .

e cple——eep r

| . _‘Réla ve - Vatz=0

\ ! ~“maximum at z =1 | } Y

b.z = 1 - % —? (paraboloid) and level ez = y? - ¥ (hyperbolic paraboloid) and
curves: relative maximum at (0,0) level curves; saddle point at (0,0)

Figwe 11.38  Classification of critical points

b. ge(x,y) = —=2x, gy(x, ¥) = =23 critical point (0, 0). Since z = 1 — x2 — ¥y, it
follows that z < 1 with a relative maximum occurring where x2 and y* are both 0;
that is, at (0, 0).

c. h.(x,y) = —2x, hy(x, y) = 2y; critical point (0, 0). The function h has neither a
relative maximum nor a relative minimum at (0, 0). When z = 0, i is a minimum
on the y-axis (where x = 0) and a maximum on the x-axis (where y = 0). a

A critical point Po(xo, Yo) is called a saddle point of f(x, y) if every open disk
centered at P, contains points in the domain of f that satisfy f(x,y) > f(xo, Yo) as
well as points in the domain of f that satisfy f(x,y) < f(xo, yo). An example of a
saddle point is (0,0) on the hyperbolic paraboloid z = y? — x?, as shown in Figure
11.38c.

SECOND PARTIALS TEST

The previous example points to the need for some sort of a test to determine the nature
of a critical point. In Chapter 4, we developed the second derivative test for functions
of one variable as a means for determining whether a particular critical number ¢ of
f corresponds o a relative maximum or minimum. If f’(¢) = 0, then according to
this test, a relative maximum occurs at x = ¢ if f”(c) < 0 and a relative minimum
oceurs if f"(c) > 0. If f”(c) = 0, the test is inconclusive. The analogous result for
the two-variable case may be stated as follows.

THEOREM 11.12 Second partials test

Let f(x,y)have acr‘ilical. poinl_al Po(xo, vo) and assume that f has continuous second-
order partial derivatives in a disk centered at (xo, vo). The discriminant of f is the
expression

D= f-“f.V.V 53 12)4
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Summary: For a critical point (a, b):
Dia.b) f..ta,b) Type

+ - Rel. max.
+ - Rel. min.
- NA Saddle point
0 NA Inconclusive

The definition of @ 2 x 2

determinant is presented in Section
2.8 of the Student Mathematics
Handbook.

Then

A relative maximum occurs at Py if
D(xq, yo) > 0 and fix(x0, yo) <0
(or, equivalently, D(xg, yo) > 0 and
f)'\ (x0. ) < 0).

A relative minimum occurs at Py if
D(xo, yo) > 0 and fy,(x0, ¥o) > 0
(or fw (xp. Yo) > 0).

5

i
¥
'
[

A saddle point occurs at Py if D(xq, yo) < 0. z=y?-x* (See ExIc)

If D(xo, vo) = 0, then the test is inconclusive. Nothing can be said about the nature of
the surface at (x, yo) without further analysis.

Proof  The second partials test can be proved by using an extension of the Taylor se-
ries expansion (Section 8.8) that applies to functions of two variables f(x, y). Details
can be found in most advanced calculus texts (also see Problem 60). -

The discriminant D = fy f,, — f2 may be easier to remember in the equivalent
determinant form

D =

Lz Ly
fo  fy
Note that.if ‘D > O at the critical point Py(x,, o). then f,, and £,y must have the same
sign. This is the reason th.al‘ when D = (), either o 5 00 f, 50 It ecioogh 10
guarantee that a relative minimum occurs at Py (or a relative ma;imum if foo < Oor
Iy < 0) xx
Geometrically, if D > 0O and f,, ~ ¢ and f,, > 0

: & »y at P, then the surface
z = f(xy) curves upward in all directions from the point Q(xy, yo 2 ), so there
is a relative minimum at Q. Likewise, if D ~ ad £, <0 a:&yo. 20), o
then the surface curves downward in all directions from, e i ulfs vlvthj:ref;re boc-

a relative maximum. However, if D < 0 4 p
o ; ; 0, the surface curv bie
directions, and down in others, 5o Q must be a saddje poi:lc es up from Q in some

e ———————————
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IJI.AMPL! 2 Using the second partials test to classify critical points
Find all relative extrema and saddle points of the function
fx,y)=2x2 4 2xy + y* = 2x =2y +5
Salution
First, find the critical points:
fomdx 2y =2 fy=2x+2y-2
Setting f, = Oand f, = 0, we obtain the system of equations
4x4+2y-2=0
x+4+2y-2=0
and solve o obtain x = 0, y = 1. Thus, (0, 1) is the only critical point. To apply the
second partials test, we obtain
Jax = | f\')' =2 f‘,\' =2
and form the discriminant
D= fulfyy— f5=®HQ) -2 =4
For the critical point (0, 1) we have D =4 > O and f. =4 > 0, so there is a relati
minimum at (0, 1).

ve
]

EXAMPLE 3 Second partials test with a relative minimum and a saddle point

Find all critical points on the graph of f(x, y) = 8x3 —24xy +y°, and use the second
partials test to classify each point as a relative extremum or a saddle point.

Solution
felx, y) = 24x% — 24y, fy(x, y) = —24x + 3y*

To find the critical points, solve
24x? —24y =0
—24X + 3)‘2 — 0
From the first equation, y = +2: substitute this into the second equation to find

—24x +3(x%)*=0
x(13 -8)=0

x(x—=2)r+2x+4) =0
¥»=0,2 The solutions of x> +2x +4 =0
are not real.

y = 4, so the critical points are (0, 0)

= —24, and

Ifx = 0, then y = 0, and if x = 2, then
To obtain D, we first find fi. (x,y) = 48x, fi,(x,y) =

and (2, 4). 2
f.1(x, y) = 6y to find D(x, ) = (48x)(6y) — (~24)* and then compute:
. ; }' ¥ iszi ;i4’=2881y~576
xy yy

At (0,0), D = =576 < 0,50 there is a saddle point at (0, 0).

At (2,4), D = 288(2)(4) — 576 = 1,728 > 0 and f,,(2,4) = 96 > 0, so there is

a relative minimum at (2, 4).

To view the situation graphically, we calculate the coordinates of the saddle point
(0, 0, 0), and the relative minimum (2, 4, —64), as shown in Figure 11.39.
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Saddle Point
(0,0,0)

a. View near the ongin (showing
the saddle point ) .

Figwre 11.40 Graph of f(x,y) = x*y*

40 ) | g %
Relatiye
mirfimim

)
Relative
mimmum
(2,4.-64)

acs i ¢ Level curves
b. View away from the ongmn (showing
the relative minimum point)

Figwe 1139 Graphof f(x, y) = 8x* — 24xy +’ @

EXAMPLE 4 Extrema when the second partials test fails
Find all relative extrema and saddle points on the graph of

fx,y) =%
The graph is shown in Figure 11.40.

Solution
Since f.(x,y) = 2xy*, f,(x,y) = 4x’y’, we see that the critical points occur only
when x = 0 or y = 0; that is, every point on the x-axis or y-axis is a critical point,
Because

e )=2%  Faulm. ) =82, Fry(x, y) = 12x%)?

the discriminant is

f.lx fx,v =
f-'}‘ f,\',\'

Since D = 0 for any critical point (xp, 0) or (0, yo), the second partials test fails.
However, f(x, ) = 0 for every critical point (because either x = O or y = 0, or both),

and because f(x,y) = x*y* > 0 when x # Oand y # 0, it follows that each critical
point must be a relative minimum. [ ]

2y*
8xy?

8xy?

Sl 12x2y?

= 24x2y% — 64x%y® = —40x%)°

ABSOLUTE EXTREMA OF CONTINUOUS FUNCTIONS

The extreme value theorem (Theorem 4.1) says that a function of a single variable
f must attain both an absolute maximum and an absolute minimum on any closed,
bounded interval [a, b] on which it is continuous. In B?, a nonempty set § is closed if
it contains its boundary (see the introduction to Section 11.2) and is bounded if it is

contained in a disk. The extreme value theorem can be extended to functions of two
variables in the following form.

THEOREM 11.13 Extreme value theorem for a function o Koia werlables

A.fu.nction of two variables f(x, y) attains both an absolute maximum and an absolute
minimum on any closed, bounded set § where it is continuous

Proof The proof is found in most advanced calculus texts -

To find the absolute extrema of a continy -
ous function ) nded
set S, we proceed as follows: e e




e |1 41 Graph of
flr. V) = ¢ over the disk
2 el

4V
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e —— T e ey

Procedure for Determining Absolure Extrema
Given a function £ that is continuous on a closed, bounded set §,

Step b, Find all critical points of f in §.

Step 2. Find all points on the boundary of § where absolute extrema can occur.

Step X Compute the value of f(xq, yo) for each of the points (xq, yy) found in
steps | and 2. :

Evaluation: The absolute maximum of f on § is the largest of the values com-
puted in step 3, and the absolute minimum is the smallest of the computed values.

EXAMPLE S Finding absolute extrema

Find the absolute extrema of the function f(x, y) = "~ over the disk 24+yt<l
The graph is shown in Figure 11.41.

Maluiion

Stepl. fi(x,y) = 2xe* " and fylx,y) = —2_&'9‘:"‘1. These partial derivatives
are defined for all (x, y). Because f,(x, y) = fy(x, y) = Oonly whenx =0
and y = 0, it follows that (0, 0) is the only critical point of f and it is inside
the disk.

Step 2. Examine the values of f on the boundary curve x? 4+ y* = 1. Because
yv? = | — x? on the boundary of the disk, we find that
flx,y) = 8.2_“__(2; o e:..?-n

We need to find the largest and smallest values of F(x) = -1 for

—1 < x < 1. Since
F'(x) = diet>

we see that F/(x) = 0 only when x = 0 (since ez"z" is always positive).
At x = 0, we have y*> = | — 0, so y = =£1; thus (0, 1) and (0, —1) are
boundary critical points. At the endpoints of the interval —1 < x < 1, the
corresponding points are (1, 0) and (-1, 0).

Step 3. Compute the value of f for the points found in steps 1 and 2:

Points to check Compute f(xp, yo) = &%
(0,0 £0.0) =e=1
0, 1) £(0,1) = ¢ '; minimum
(0, -1 £(0, 1) = ¢ ' minimum
(1,0) f(1,0) = e; maximum
(=1,0) f(=1,0) = e; maximum

Evaluation: As indicated in the preceding table, the absolute maximum value of f
on the given disk is e, which occurs at (1,0) and (—1, 0), and the absolute minimum
value is ¢!, which occurs at (0, 1) and (0, —1). &

In general, it can be difficult to show that a relative extremum is actually an ab-
solute extremum. In practice, however, it is often possible to make the determination
using physical or geometric considerations. Consider the following example.

EXAMPLE 8 Minimum distance from a point to a plane
Find the point on the plane x + 2y + z = 5 that is closest to the point (0, 3, 4).
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Soluiion
If Q(x, y, z) is a point on the plane x + 2y
distance from P to Q is

4+z=>5,thenz =5—X—2y and th

__—————f’__——__
d=JoG 0P+ -3 +G—4"

AT0-N+6-3- -9’

Instead of minimizing d, we minimize

9 2
flx,y) = dl=x+0-3+ (1—x—=2y)

, R e s e
since the minimum of d will occur at the same points \_avhere d 1s at[so Tzlnlm;zf:d_
To minimize f(x,y), we first determine the critical points of f by solving the

system
fx =2x ~2(1 - x —2V)=4x +4y-2=0
fy=2y—3)—4( —x—2y) =4x+ 10y — 10=20
We obtain x = —%. y= ?;—. and since
fr=4 =1 foy =4
we find that

D= fifyy—fL=410)—4">0 and fo,=4>0

so a relative minimum occurs at (——%, 4;)

Intuitively, we see that this relative minimum must also be an absolute minimum
because there must be exactly one point on the plane that is closest to the given point.
The corresponding z-value is z = 5 — (—2) — 2 (%) = % Thus, the closest point on

the plane is Q (—2. 3, %), and the minimum distance is

SN | 2 5 a7’ 25 5
d=[|= +(——3) +[1+——2(—) = ==——=
J(é) 3 6 3 6 N
Check: You might want to check your work by using the formula for the distance
from a point to a plane in ®* (Theorem 9.9):
AX0+BJ*0+C'Z0—D‘_ 0+23)+4-5 5 -
A+BT+ ¢ | |ViTx 2241233 6

NG
LEAST SOUARES APPROXIMATION OF DATA

d=

In the followilng example, calculus is applied to justify a formula used in statistics and
in many applications in the social and physical sciences.

EXAMPLE 7 Least squares approximation of data

Suppose data consisting of n points P, P, are k :
» verey Bp nown, and
function v = f(x) that fits the data reasonably well. In particular, s::p; ';]:v::owt;l::“i:

find a line y = mx + b that “best fits” the data i
I ; n the sense that the sum are
of the vertical distances from each data point 1o the Jine 1S m?:ilmie s: of the squares

Solution

ences between the y-values and the line v —
i Y = mx + b. The line th is called
ihe regreosian Nov. SUPPOS‘? lha.“ the point P, has Components (ra( \:ve SZC kl:h s int
the value ?n the rcgress:(?n lineisy = M + b and the val ! [-‘k, Y&). “. s po
The “error” caused by using the point o alue of the data point is ¥

p n the regression Ii ¥
point can be measured by the difference cgression line rather than the actual data

Ye = (mxy + b)
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he data points may be above the regression line for some values of k and below the
recression line for other values of k. We see that we need 10 minimize the function that

1 bt 1o} represents the sum of the sguares of all these differences:

! i - : Fim,b) = Ll\. (mx; + b))

J.l""/" b k=l h F is minimized first
| i w20 The situation is illustrated in Figure 11.42. To find where F is minimized, we firs
. . " v I’ ol 11 T
1 | Silx $.) compute the partial derivatives
| ¥ > DN=x1)

] i = v = (mxp + b)) (=x;

1 ! IS 5 RS0 0N B Fulm,b) = L [va i

| P o 2 - ot

i 7 " n "

¢ |

| : "‘2"'}:-'3"‘2”2-"‘22"&)‘1
|

| @ hwm| =]

i 11,40 Least squares tat

w-umﬂ""‘“‘“‘u ":b""' b) = Z 2“’ - (H‘II] + b)'(_l)
™
=2mz.n +2bzl _ZZ:.“
kml k=] k=]
" n
=2m z.n + 2bn ~ 22)’1
k=1 k=1
Set each of these partial derivatives equal to 0 to find the critical values (see Problem
61).
n n n n " . 2
n Z.tt_\-* - (Ext (Z y*) z:xf Z)"& = (Zn) (Zxk)’t
m= k=] k=1 k=1 and. B k=1 k=1 k=1 ==
7 n n 2 " A . 2
nz.tf— (Zx.t) "Z"‘f‘ (Z‘*)
k=1 k=1 k=1 k=1
It can be shown that these values of m and b yield an absolute minimum for F(m, b).
»
Most applications of the least squares formula stated in Example 7 involve using
aicalculator or computer software. The following technology note provides an exam-
ple.
TECROLGET WOTE
Many calculators will carry out the calculations required by the least P T PR eI
:qunr;s a;;‘pmximation procedure.  Look at your owner’s manual for iy T 1
elies. Most caleulators allow you to input data with keys labeled [STAT Eir 3 -
ad DATA) After the data are input, the m and b values are given by pressing T rEE e P
L choice. For example, ten people are given a standard 1Q test, ;dn_h_‘_ EE.if / LR
seores are then compared with their high school grades: 700 MR S DR ;“1
17 105 11 96 135 81 103 99 107 | Is L] R o
\ 09 5..%._._ S ] Ol e "N ) )
O % 28251 2834 19 91 35 B9 33 il ke B
| |28 30 | 715 | w00 | 125%
"_ﬂ!tul_ator output shows: m = 0224144711 and b = 3173417224, A S SN S N L ,fl*_.A BB
*iler diagram with the least squares line is shown in Figure 11.43, ! i 51 N
<P S Figors 1043 Scaier diagram and least squares line

.
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1.7 PROBLEM SET

@ 1. WHAY BOES IS BAYT  Doccribe wht [ meant by ot N flx,y) = (1+¥
cal point,

)
Yoy

D e ylye! ™

2. WHAY BOES THIS BAYT  Docribe o procedure for clussity-
ing relative extrema.

X WHATDORS THIS SAY?  Describe o procedure for determin
ing absolute extrema on a closed, bounded set S,

Find the critical points in Problems 4-23, and classify each point
as a relative maximum, a relative minimm, or a saddle point,

4 flx,y) =i wdyy 4 Y42

8 Sx,y) = =

9. flx,y) mx? e xy o y? 10, f(x, y) sy = x4y
1L f(x,y) m =2 4 9x =4y} 12, f(x,y) = e 00D
13, f(x,y) = (x? 4 2yH)e! ==
14, f(x,y) =W
15, fi(x,y)mx=! 4y~ o 20y
16, f(x, ¥) = (x = 4) In(xy)

17, flr ) mxt oy 4 362 < 18y 4 Bly 4+ §

18. f(x,y)m 2?4 y* 4 30% = 3y = |2x — 4
19 fv,v) m x4 37— Gxy o Ox Sy 4 2
20, fix,y) mxdy? 4 Li

21, f(x,y) mxl 4y )4 68
Xy
22, f(x,y)m 3.\‘\'1 - 2x? ¥+ 36xy
23, fx,y) =35 4 12x + By — 12y% 47

& [(x,y) matgny ohmi the absolute extrema of f on the closed bounded set S in the
plane as described in Problems 2430,

4. f(x,y) = 2% — 3% § is the disk x? + 3! < |,

25, f(x,y) = xy = 2% = Syi 8 is the triangular region with ver
tices (0, 0), (7,0), and (7, 7).

26, f(x,y) = x4 3y — 4 42y —3; § I the square region with
vertices (0, 0), (3, 0), (3, =3), and (0, ~3),

27. f(x.y) = 2sinx 4+ Scos Vi 8 is the rectangular region with
vertices (0, 0) (2,00, (2, 5), and (0, 5).

28, f(x,y) m et t204y?, P8 is the disk x? 4 2v 4 y? < 0,
29 SO y) = o vy 4 g2, Sis the disk x* 4 7 < |,

30, [(x.)) = x o 4xy 4y + 4y; 8 is the square region
0=x=20=cy<?

10



ind he Jeast squares regression line for the data pointy given in
i

;mHmu J1-34.

# l‘:'-'“' (=1,=1), 0. 1), (1. 3). 3.%)

w (.1, (1.1.8). 223, (31,39, 4.5
'u. (3.5.72). (4.3.31), (6.2,5.12), (7.52,5.32). (8.03.5.67)
"‘. (4.2 (=3 1), (0,0), (1, <3), (2. -1}, (3. =2

1, Find all points on the surface y* = 4 4. x7 that are closest to

" the origin.

v, Findall points in the ['"“"‘c ¥+ 2y 4 3z = 4 in the first octant

© where f(x, ¥.2) = X"y has a maximum value,

y7. A rectangular box with DO top is to have a fixed volume. What

" should its dimensions be if we want 10 use the least amount of
material in its construction?

& Awircof length L is cut into three pieces that are bent to form
a circle, a square, lnd an equilateral triangle. How should the
cuts be made to minimize the sum of the total area?

3. Find three positive numbers whose sum is 54 and whose prod-
uct is as large as possible.

#. A dairy produces wl'.iole milk and skim milk in quantities x
and ¥ piptx-rrspc\:m'ely. Suppose the price (in cents) of
whole milk is p(x) = 100 - x and that of skim milk is
¢(v) = 100 -y, and also assume that C(x, y) = x4 xy+y?
is the joint-cost function of the commodities. Maximize the
profit

Plx.¥) = px+qy - C(x,y)

41. Let R be the tnangular region in the xy-plane with vertices
(=1.=2), (=1, 2), and (3,2). A plate in the shape of R is
heated so that the temperature at (x, y) is

T,y =2 —xy+y* -2y +1

(in degrees Celsius). At what point in R or on its boundary is
T maximized? Where is T minimized? What are the extreme
temperatures?

42 A parucle of mass m in a rectangular box with dimensions x,
v. 2 has ground state energy

E(x,y )_kz l+]+l
Eadaaian ™ 7 y oz

where & is a physical constant. If the volume of the box is fixed
(say Vi, = xyz), find the values of x, y, and z that minimize
the ground state energy.

43. A manufacturer produces two different kinds of graphing
calculators, A and B, in quantities x and y (units of
1.000), respectively. If the revenue function (in dollars) is
Rix,y) = —x? — 2y* 4+ 2xy + 8x + 5y, find the quantities of
A and B that should be produced to maximize revenue.

4. Suppose we wish 10 construct a closed rectangular box with
Volume 32 fi’. Three different materials will be used in the
construction. The material for the sides costs $1 per square
foot, the material for the bottom costs $3 per square foot, and
the material for the top costs $5 per square foot. What are the
dimensions of the least expensive such box?

.. Modeling Problem A store carries two competing brands of bot-
tled water, one from California and the other from upstate New
York. To mode] this situation, assume the owner of the store
tan obtain both at a cost of $2/bottle. Also assume that if the
California water is sold for x dollars per bottle and the New

1.7 Exirema of Functions of Two Variables 759

York water for y dollars per bottle, then consumers will buy
approximately 40 — 50x + 40y bottles of California water and
20 + 60x — 70y bottles of the New York water each day. How
should the owner price the bottled water 10 generate the largest
possible profit?

46. Modeling Problem A tclephone company is planning to intro-
duce two new types of executive communications systems that
it hopes to sell to its largest commercial customers. To create
a model to determine the maximum profit, it is assumed that
if the first type of system is priced at x hundred dollars per
system and the second type at y hundred dollars per system,
approximately 40 — 8x 4 5y consumers will buy the first type
and 50 + 9x — 7y will buy the second type. If the cost of
manufacturing the first type is $1,000 per system and the cost
of manufacturing the second type is $3,000 per system, how
should the telephone company price the systems to generate
maximum profit?

47. Modeling Problem A manufacturer with exclusive rights to a
sophisticated new industrial machine is planning to sell a lim-
ited number of the machines to both foreign and domestic
firms. The price the manufacturer can expect to receive for the
machines will depend on the number of machines made avail-
able. For example, if only a few of the machines are placed
on the market, competitive bidding among prospective pur-
chasers will tend to drive the price up. It is estimated that if
the manufacturer supplies x machines to the domestic market
and y machines to the foreign market, the machines will sell
for 60 — 0.2x + 0.05y thousand dollars apiece at home and
50—0.1y 4-0.05x thousand dollars apiece abroad. If the man-
ufacturer can produce the machines at a total cost of $10,000
apiece, how many should be supplied to each market to gen-
erate the largest possible profit?

48. A college admissions officer, Dr. Westfall, has compiled
the following data relating students’ high-school and college
GPAs:

HS GPA 20, 25 B30 30 35 35 40 40
College GPA1.5 20 25 35 25 30 30 35

Plot the data points on a graph and find the equation of the
regression line for these data. Then use the regression line to
predict the college GPA of a student whose high school GPA
i8:3:75:

49. Itis known that if an ideal spring is displaced a distance y from
its natural length by a force (weight) x, then y = kx, where k
is the so-called spring constant. To compute this constant for
a particular spring, a scientist obtains the following data:

xib) 52 73 8.4 10.12 12.37
v(in) 11.32 15.56 17.44 21.96 26.17

Based on these data, what is the “best” choice for &?

50. Exploration Problem The following table gives the approximate
U.S. census figures (in millions):

Year: 1900 1910 1920 1930 1940
Population: 76.2 922 106.0 123.2 132.1

Year: 1950 1960 1970 1980 1990
Population: 151.3 1793 2033 2265 2487

11
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2x?). Discuss the behavior of this

Sometimes the critical points of a func-
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= f(x, y)at(0,0),

Figme 11,45 Problem 59

Lagrange Multipliers

60,

6l,

62,
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Logrange Multipliers
Prove the second partials test. Hint: Compute the second
directional derivative of [ in the direction of the unit vector
u = hi 4 kj and complete the square,

Verify the formulas for m and b associated with the least
Squares approximation,

This problem involves a generalization of the least squares
procedure, in which a “least squares plane” is found to pro-
duce the best fit for a given set of data. A researcher knows
that the quantity z is related 0 x and y by a formula of the
form z = kx + kyy, where k; and k; are physical constants.
To determine these constants, she conducts a series of experi-
ments, the results of which are tabulated as follows:

¥ 1,20 086 1.03 165 -095 —1.07
y 043 192 152 -1.03 1.22 -0.06
: 32 8573222 092 =111 =097

Maodify the method of least squares to find a “best approxima-
tion” for k; and k.

IN THIS SECTION  method of Lagrange multipliers, constrained optimization problems, Lagrange multipli-
ers with two parameters, a geometric inferprefation of Lagrange's theorem

METHOD OF EAGRANGE MULTIPLIERS

In many applied problems, a function of two variables is to be optimized subject to a
restriction or constraint on the variables. For example, consider a container heated in
such a way that the temperature at the point (x, y, z) in the container is given by the

function T'(x, v, z). Suppose that the surface z

S (x, y) lies in the container, and

that we wish to find the point on z = f(x, y) where the temperature is the greatest. In
other words, What is the maximum value of T subject to the constraint z = fx, v,
and where does this maximum value occur?

THEOREM 11.14 Lagrange's theorem

Assume that f and g have continuous first partial derivatives and that f has an ex-
tremum at Py(xo, yo) on the smooth constraint curve g(x, y) = ¢. If Vg(xg, vo) # 0,
there is a number A such that

V f(x0, yo) = AVg(xp, yo)

F'roof  Denote the constraint curve g(x, y) = ¢ by C, and note that C is smooth. We
represent this curve by the vector function

R(1) = x(0)i + y(1)j

for all 7 in an open interval 1, including #, corresponding to P, where x'(1) and y'(1)
exist and are continuous. Let F(t) = f(x(1), y(t)) for all 7 in I, and apply the chain

rule to obtain

dx
F'(t) = fo(x(1), _v(f))‘—ﬁ + fi(x(n), y(1))

12

‘2 =V f
e Slx(), y(r)) - R'(1)
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@ This system is solved as

Example 3.4 in Section 3.1 of the
Student Mathematics Handbook.

z

Constrained
maximum

Unconstrained
maximum

xey=1 . z=1-2-y

Figure 11.48 The maximum is the
high point of the curve of intersection
of the surface and the plane.

) N

we know that F(r) has an exLremum at g, th,

Because f(x, y) has an extremum at /%
’ ') ’ ; . - y re 1 = Ig). Ther
value of  that corresponds to Py (that is, Fo 15 the point on C whe . clore,

we have F'(1y) = 0 and
F'(to) = V f (x(t). y(to)) - R(10) =0 . '

If V £ (x(to), y(tg)) = 0, then A = 0, and the condition Y = ,',_IV;g ;‘szllsf;c;mv-
tally. 1If Vf(f((:.,), y(tg)) # 0, then V [ (x(1o), y(1g)) is orthogona ,ﬂ - n(:-ma] lse
R'(fy) is tangent to the constraint curve C, it follqws that V f (xo, );_ﬂ - = toC,
But Vg(xg, yo) is also normal to C (because C is a level curve ¢ fd, 2 g
clude that V f and Vg must be parallel at Po. Thus, there is a scalar A such thy
V f (x0, Yo) = AVg(xp, yo), as required. -

CONSTRAINED OPTIMIZATION PROBLEMS

The general procedure for the method of Lagrange multipliers may be described as
follows.

[ L 3

Procedure for the Method of Lagrongs Multipliers

Suppose f and g satisfy the hypotheses of Lagrange’s theorem, and that f(x, y)
has an extremum subject to the constraint g(x, y) = ¢. Then to find the extreme
value, proceed as follows:

1. Simultaneously solve the following three equations for x, y, and A:
L, y) =2ge(x,y)  fy(x,y)=2hg(x,y) glx,y)=c¢

2. Evaluate f at all points found in step 1 and all points on the boundary of the
constraint. The extremum we seek must be among these values.

EXAMPLE 1 Optimization with Lagrange multipliers
Given that the largest and smallest values of f(x,y) = | — x* — y? subject to the

constraint x + y = | withx > 0, y > 0 exist, use the method of Lagrange multipliers
to find these extrema.

Solution
Because the constraintis x +y = 1, let g(x, y) = x 4 y
L ==2x  fyx,)=-2y gxy=1 gk y=I

Form the system

=2x = M1) — fi(x,y) = Ag:(x, )
=2y = A(1) — fy(x,y) = Agy(x, y)
x+y=1 —gx,y)=1

The only solution is x = §, y = }.

£ =1-@ - (4 =1

2
The endpoints of the line segment

x+y=1 forx >0,y >0
are at (1, 0) and (0, 1), and we find that
SJA0)=1-12_02-9
fO,D)=1-02_12-9

Therefore, the maximum value is § at (], 3),

and the mini : is 0 and
(0. 1. (See Figure 11.46.) mimmum value is O at (1, 0) dﬂ'

13
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The me ¥ Y aovanok T
o \”‘ri‘l;:hud (?l L‘.igr.mgu multipliers extends naturally to functions of three or
Pl -_]- es. If a function f(x, v, 2) has an extreme value subject to a constraint
glx,¥,2) = ¢, then the extremum occurs at a point (xo, yg, z9) such that

g(xo, Y0.20) = c and V f(x = |

. 0. 20) = d V f(xo0, Yo, 20) = AVg(Xxo, Yo, 2 '

& f(x0, Yo, 20) = AVg(xo, Yo, 20) for so .
Bl 0,20 me number 4. Here

EXAMPLE 2 Hottest and coldest points on a plate
iconlayncr in R? has the shape of the cube givenby0 < x < 1,0 <y <1,0<z <l
: plate is placed in the container in such a way that it occupies that portion of the plane
X 4 v 4 2 = | that lies in the cubical container. If the container is heated so that the
temperature at each point (x, y, 2) is given by

T(x,y,2) =4—2x* - y? -z

in hundreds of degrees Celsius, what are the hottest and coldest points on the plate?
You may assume these extreme temperatures exist.

-
-

Selution

(0,1, 1) Thc cube and plate are shown in Figure 11.47. We will use Lagrange multipliers to
find all critical points in the interior of the plate, and then we will examine the plate’s
boundary. To apply the method of Lagrange multipliers, we must solve VI = rVg,
where g(x. v, 2) = x + y + z. We obtain the partial derivatives.

{ / 4 T, = —4 T, = -2y T, =-2 Gx=8 =8=1
AT 7 We must sol s
?' - oL LJ.O) solve the system
' . ; —4x = A — Ty =Ky
it 1147 Find the hottest and @ See Problem 29 of —2y=XA « T, = Agy

sidest points on the plate inside

e cube.

Problem Set 3 of the Student o
Mathematics Handbook. —2z=2 « T, =28
x+y+z=1 —gx,y,2)=1

The solution of this system is (4, %,
vertices A(1,0,0), B(0,1,0),and C
triangle may be found as follows:

The boundary of the plate is a triangle with

2
3):
(0. 0, 1). The temperature along the edges of this

x+z=1y=0 T|(.x)=4—2x2——(0)2—(l—x)2=3—3x2+2x. 0<x<1
x+y=12=0 Tz(x)=4-—2x2—(l—x)z—(0)2=3—-3x2+2x, 0<x<l
y+z=1,x=0 Tg(y)=4—2(0)2—y2-(l-—y)2=3+2y—2y2. 0<y<l

Edge AC: Differentiating, T{(x) = T;(x) = —6x +2, which equals 0 when
x= 1‘ If x = %, then z = % (because x +z = 1,y =00n edge AC), so we have
the critical point (.0, §)-
Edge AB: Because I> = T,, wesee x = 5. If x = 1, then y = 2(
x4 y=12z=0onedge BC), so we have another critical point (3 % 0).
Edge BC: Differentiating, T/(y) = 2—4y, which equals 0 when y = L. Because
y+z=1landx =0 we have the critical point (0, 5. 3).
Endpoints of the edges: (1,0, 0), (0, 1,0), and (0,0, 1).
The last step is to evaluate T at the critical points and the endpoints:
r(3)=%
rGod) =3k TGIO=3% TOLD=3%
7(1,0.00 =2 T(0,1,0)=3; 7(0,0,1)=3
Comparing these values (remember that the temperature is’in hundreds of degrees Cel-
sius), we see that the highest temperature 15 360°C at ({ $ %) and the loweslt temper-
ature is 200°C at (1,0,0). ]

14
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sed only as an intermediary device fc.)r finding the
use rmination of the constrained extremg.
rtain problems, thanks to the interpre.

Notice that the multiplier is ) Sy
critical points and plays no role in the final dete
However, the value of A is more important in ¢€
tation given in the following theorem.

lue
THEOREM 11.13  Rate of change of the extreme va RaeRty
’ . s SIT
Suppose £ is an extreme value (maximum nr.mmlmum)?rgl:uejof E with reSPGCT:::
g(x, ¥) = ¢, Then the Lagrange multiplicr A is the rate of chang

cithatis, A = dE /de.
Proof  Note that at the extreme value (x, y) we have
fi=Mge, fy=XAgy, and glx,y)=c

The coordinates of the optimal ordered pair (x, y) depend on ¢ (bcc:;use d:iﬂf;cq_[hm""
straint levels will generally lead to different optimal combinations of x and y). Thus,

E = E(x,y) where x and y are functions of ¢

By the chain rule for partial derivatives:

dE _ 9Edx  OEdy
de ~ dx dc | 9y dc

= fxd_x + f‘_ﬂ Because E = f(x, v)
de “de

= Agxd-—x + Ag,ﬂ Because f, = Ag, and [, = Jg,

dc “dc
- dx ” dy
e de & dc
= Aj—f Chain ruie

dg k-

=k Because = | (remember ¢ = () .

c

This theorem can be interpreted as saying that the multiplier estimates the change
in the extreme value E that results when the constraint ¢ is increased by 1 unit. This
interpretation is illustrated in the following example.

EXAMPLE 3 Maximum output for a Cobb-Douglas production function

It x thousand dollars is spent on labor, and ¥ thousand dollars is spent on equipment,
itis estimated that the output of a certain factory will be

Q(x,y) = 5012/5)'3"5

unills, I£$150,000 is available, how should this capital be allocated between labor and
equipment to generate the largest possible output? How does the maximum output

change if the money available for labor and equipment is increased by $1,000? In
economics, an output function of the general form Q(x ) = x%yl-a; ' ;

v y) = ) s as a
Cobb-Douglas production function. v ? i knowniss

Solution

Because x and y are given in units of $1,000, the constraint equation is x + y — 150.

If we set g(x, v) = x + y, we wish to maximize Q subj ! e
the method of Lagrange multipliers, we first ﬁndQ VECCIOg R, ) = 150 Toapply

y = 20x~35,3/5 = 30x2/5.~2/5
Q ) y 30x y / gr =1 2y =1

15
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Neal, solve the system

I TR T )
06 2 A
Y+ yvym |50
From the first two equations we have
20x " VIy VY w 3Oy
20y = 0y
yw | Sy

Substitute y = 1.5x into the equation x + v = 150 to find x = 60, This leads tw the
solution v = 90, 50 that the maximum output is

Q(60, 90) = SO0)* (90 "Y & 3,826,273502  units
We also find that

A= 200600 MY 2550849001

Thus, the maximum output is about 3,826 units and occurs when $60.000 is allocated
to labor and $90,000 to equipment, We also note that an increase of $1,000 (1 unin
in the available funds will increase the maximum output by approximately A = 2551
units (from 3,826.27 10 3,851.78 units). | ]

LAGRANGE MULTIPLIERS WITH TWO PARAMETERS

The method of Lagrange multipliers can also be applied in siwations with more than
one constraint equation, Suppose we wish to locate an extremum of a function defined
by f(x, ¥, 2) subject to two constraints, g(x, W) = e and hix, y, 2) = ¢y, where
£ and A are also differentiable and Vg and VA are not parallel, By generalizing La-
grange’s theorem, it can be shown that if (Y0, Yo, 20) s the desired extremum, then
there are numbers A and j such that g(xo, Y, 20) = €1, h(Xo, M, 20) = ¢, and

V£ (xo, Yo. 20) = AV (X0, Yo, 20) + 4V (g, Mo 20)

As in the case of one constraint, we proceed by first solving this system of equations
simultaneously 1o find A, 4, xo, o, 2o and then evaluating £(x, v, 2) at ench solution

and comparing 1o find the required extremum. This approach is tustrated in our final
example of this section,

EXAMPLE 4 Optimization with twe constraints

Find the point on the intersection of the plane x + 2y 4 2 = 10 and the paraboloid

2 =x%+ y? that is closest to the origin (see Figure 11.48), You muy assume that such
a point exists,

Solution

The distance from a point (x, ¥, 2) to the origin is § = /&% y3 5 2, but Instead of
minimizing this quantity, it is easier to minimize its square. That is, we will minimize

Ty ) mad 4y 4 22
subject to the joint constraints
gy =x+2p =10 and A, ¥ D wad 4y -z w0
Compute the partial derivatives of /, ¢, and h:
Limdx fimdy fim2:
=]l p=m2 pwmi
hy=2x hym2y h, =]

16
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To apply the method of Lagrange multipliers, we use the formula
V £ (x0, Yo. 20) = AVg(x0, Yo, 20) + wVh(xo, 0. 20)
which leads to the following system of equations:
2x = A1) + u(2x)
2y = A(2) + u(2y)
2z = A(1) + u(=1)
x+2y+z=10
z=x*+y*
This is not a linear system, so solving it requires ingenuity. ‘ :
Multiply the first equation by 2 and subtract the second equation to obtain
4x — 2y = (4x — 2y)u
(4x —2y) — (4x = 2y)u =0
(4x —2v)(1 =) =0
4x —-2y=0 or 1—u=0
CASEL If4x — 2y = 0, then y = 2x. Substitute this into the two constraint equa-
tions:
X+2y+z=10 ‘ x24+y2—2z=0
x+220)+z=10
z=10-5x
By substitution we have 5x* = 10 — 5x, which has solutions v — | and
x = —2. This implies
x = ‘ x=-2
y=2x=2(1)=2
2=5x>=5(1)2=5
Thus, the points (1,2, 5) and
distance.

CASEIL If 1 — u = 0, then =1, and we look at th
X, ¥,z A, and p.

X4+@2x)-z=0
z = 5x?

Yy=2x=2(-2)= -4
z=585x*=5(-2* =20
(=2, -4, 20) are candidates for the minimal

¢ system of equations involving

2x = A(1) 4 u(2x)
2y = A(2) + u(2y)
2z = A1) + pu(~1)
X+2y+z=10
z=2x2 42

The top equation becomes 2x = 3 4 2x, 50 that 4 = 0. We now find z from
the third equation:

2z =~1] or = -
Next, turn to the constraint equations;

V_i.+727_v_+7z_=7 10 ! P4y,

’oj—

0
0

[

X+2y—-1=10 ‘ e +_y72';

X+2y =10+ %

There is no solution because x* 4 y2 ¢
We check the candidates for the m

I
2
B _\'2 = -
annot equal a negative number,

| nimal distance:

flx,y,2) =x2 4 ¥+ 22 0 that
JAL2.5) =12 422 L 2 _ 4
f(=2,-4,20) = (~2y2 (=4)* +20% = 420
Because f(x, y, z) represents the square of (he distance, the minimal distance is v/30

and the point on the intersection of the WO surfaces nearest to the origin is (1. 2. 5). @

-

17
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1.8 PROBLEM SET

TEB Laginoge Mabighers 767

L R T R N N RN T

Logrange's theorem can be (nterpreted geometrienlly. Suppose (he constimint curve
RO V) s e the lovel curven f(x, v) = & are drawn In the yeplane, us shown {n
Flgure 1149

T maximize 70, v) subject (o the contenint g(x, ¥) = ¢, we st find the “high-
OAt" (lefimont, avtually) level erve of / that Intersects the constralnt curve, As Figure
LEAD suggests, this eritlenl Interseetion oecurs at a puint where the consteaint curve is
tungent to o lovel vurve thut In, where the slope of the constraint curve gl y) = ¢

In equal (o the slope of u level eurve /1, y) = &, According to the formuls derived in
Section LLA (p, 732),

Slope of constralnt curve v, v) = ¢ I & '

Hy
/i
v

The condition that the slopes are equil can be expressed by

Stope of ench level curve Iy

fi Hy [ £
W i, oF, eguivilently, ool
Iy Ky q 4 i N

Let & equal this eomimon ritlo,

An'r-' nnd A-—&

' Ry
S0 thit
Jo=Ag, ind Jy = Ag,
andd
Vo Ll Sy m A(gd + tyd) = AVy

Becuuse the point in question must lie on the constealnt curve, we also have
HOG V) e I thewe equations are satisfled ot & cortain point (a, b), then [ will
reach fts contralned maximum at (a, b) i the highest level curve that intersects the
constraint eurve does so at this point, On the other hand, if the lowest level curve
that intersects the conutraint curve does 5o ui (a, b), then S achieves its constrained
siniminen At this polig,

In the problems in this set, you may assume that the requested ex- 12, Maximize f(x, v, 2) = xve subject 10 3x 4 2y o 2w 6,

freme value(s) exist,

Use the method of Lagrange multipliers to find the requitred con-

strained extrema in Problems 114,

L Maximize f(x, y) = xy subject 10 2x 4 2y = §,

13 Minimize fOx, v, 2) w4 y' 4 2? subject 1o x = 2y 43z w 4,

14 Minimize f(x, y, 00w x? 4 ' 4 ¢ subject 1o
Axd e 21 e p? - d,

0 I8, Find the smullent value of £(x, v, 2) = 247 Ayt 2! subject

& Maximize f(x, y) = xy subject to x + y = 20, (0 dy < By 4 22w 10, What, it anything, can be said about

& Maximize f(x, y) = 16 = x7 = y? subject 10 x 4 2y = 6, the lurgest value of f subject 16 this constraint?

& Minimize f(x, y) w 2% 4 y? subject 1o x + y = 24, 16, Lot /(x, vy, 2) = x?y*22, Show that the maximum value of f

5. Minimizo f(x, y) w 2% 4+ y* subject (0 xy = |, on the sphere ¥ 4 y* 4 ¢% w R7 iy RO/27,

6 Minimize f(x, y) = a7 < xy 4 29" subject (0 2v 4 y = 22, 17, Find the maxbmum and minimum values of

T Minimize f(x, y) s 47 = y* subject 0 x7 + y* w 4, SOy e) wox <y gon the sphere x4 v 4 27w 100,

8 Maxiniize f(x, y) s a? = 2y =y subject 10 47 4 y' w1, 18, Find the maximum and minimum values of

% Maxiniize f(x, y) s cos x 4 con y subjoct o y = x 4 ' JO v ) A 2y < Az onthe sphere x4 y? 4 2% w100,

10, Maximize JUx, ) w e subjecttox? 4 y7 w3, 19 Use Lagrange multipliers o find the distance from the origin

. Maximige fia, y) = In(ay?) subject 1o 2% 4 3y? = 8 for (o the plane Ax 4 By + Czow D where at least one of A, B,
X0, ; C I nonzero,

18



