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EXAMPLE 9 Fijeld with Nine Elements
Let Zyli) = {a + bila, b € Z3}

= (0.1,2,0, |+ 0,2 + 0,20, 1 + 20,2+ 2i}

where i2 = —1. This is the ring of Gaussian integers modulo 3.
Elements are added and multiplied as in the complex numbers, except
that the coefficients are reduced modulo 3. In particular, -1 = 2.
'able 13.1 is the multiplication table for the nonzero elements of
Z5[1]. ¢

EXAMPLE 10
Let Q[\/i] = {a + pV2 | a, b € Q}. Itis easy to see that Q[\/i] is a
ring. Viewed as an element of R, the multiplicative inverse of any
nonzero element of the form a + bV/2 is simply 1/(a + b\V'2). To ver-
ify that Q[ V2] is a field, we must show that 1/(a + b\/2) can be writ-
ten in the form ¢ + dV/2. In high school algebra, this process is called
“rationalizing the denominator.” Specifically,

1 1 a=bV2__a b 5
a+bV2 a+bV2a-bV2 P -200 -2 e

TABLE 13.1  Multiplication Table for Z;|i]

i 2 i 1 +i 2+i 2i |+ 20 2+ 2i
| 1 2 i 4+ 240 2i | +2i 2+ 2i
2 2 ] 2i 2+ 20 142 i 240 1+
I I 20 2 247 2+2i 1 1+ 142
L +di V4@ 2420 2+i 2i 1 | +2i 2 i
240 240 1420 2+20 1 i L+ 20 2
die 2 i | L+ 20 1+i 2 2 +2i 2+
L2 142 2+i 1+i 2 2i 2+ 20 i 1
DEA 242 N +i L+ 2 2 24+ | 2i
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I’bH\'l I I()\ Characteristic of a Ring

The ‘i‘:n:m-r‘i.\'m' of a ring K is the least positive integer n such
that v~ 0 for all vin R 1 no such integer exists, we say that R
has characteristie 0. The ¢ haracteristic of K is denoted by char R.

i

'

Thus, the ring of integers has ¢ haracteristic 0, and Z,, has charac-
teristic 2. An infinite ring can have nonzero characteristic. Indeed, the
umz Z-[x] of all polynomials with coeflicients in Z, has characteristic

2. (Addition and multiplication are done as for polynomials with ordi-
nary integer coefticients except that the coefficients are reduced mod-
ulo 2.) When a ring has a unity, the task of determining the character-
wstic is simplitied by Theorem 13.3

Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under
addition, then the characteristic of R is 0. If | has order n
under addition, then the characteristic of R is n.

pPROOF. 1f 1 has infinite order, then there is no positive integer n
such that n + 1 = 0, so R has characteristic 0. Now suppose that | had
additive order n. Then n - 1 = 0, and n 1s the least positive integer with
this property. So, for any x in R, we have

nx =n(lx)y=m-1x=0x=0.
Thus, R has characteristic n.

In the case of an integral domain, the possibilities for the charac-
teristic are severely limited.
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Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is O or prime.

to show that if the additive

PROOF. BY Theorem 13.3, it suffices
that 1 has order n and

order of 1 is finite, it must be prime. Suppose
that n = st, where | = s, 1= 1. Then

0=n~l=(st)'1=(s-1)(t-1).

positive integer with the
Thus, n 18
BR

So,s-1=0orz-1= 0. Since n is the least

property that n - 1 = 0, we must have s = nort = n.

prime.

We conclude this chapter with a brief discussion of polynomials
with coefficients from a ring—a topic We will consider in detail in
later chapters. The existence of zero-divisors in a ring causes unusual
results when one is finding roots of polynomials with coefficients in
the ring. Consider, for example, the equation x2 —4x+ 3 =0.Inthe

integers, we could find all solutions by factoring
R—dx+3=x-3Nx—-1D=0

qual to 0. But notice that when we say we

and setting each factor €
are using the fact that the

can find all solutions in this manner, we
only way for a product to equal 0 is for one of the factors to be 0—

that is, we are using the fact that Z is an integral domain. In Z;,
there are many pairs of nonzero elements whose products are 0:
7 . — . / pres ve— — '
27.6=03-4=04-6=0,6-8= 0, and so on. So, how do we find
- 2 - 2 —_— = - - [} *
all solutions of x2 — 4x + 3 = 0in Z;5? The easiest way 1s simply to
try every element! Upon doing so, we find four solutions: x = 1
N T . - | ‘
1 ;}l 7. and x = 9. Observe that we can find all solutions of = —
4x + 3 = 0 over 7 N o . B
i over [,.; or Z,3, say, by setting the two factors x — 3 and
. equal to 0. Of course, the reason why this works for these ring
. Y; < » b . = ’ o —\\‘
IS lhﬁ.xl they are integral domains. Perhaps this will convine :
that integral domains are particularly advant ‘ A
oives i uculary advianiageous nngs. Table 13.2
LIVCES d suinmary ol some of the rings we have intr - -
g ave mtroduced and their

jropertues,
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TABLE 13.2 Summary of Rings and Their Properties

Integral Charac-
Ring Form of Element Unity Commutative Domain  Field tenstic
Z k ] yes yes no 0
Z,, n composite  k ] yes no no
Z,, p prime k l yes yes  yes P
Z] x| axt e 4 flxy=1  yes yes no 0
ax + ag
nZ,n > 1 nk none yes no no 0
M(Z) “ bl {I O] no no no O
¢ d. iy i
My(2Z) 2 Zb] none no no no O
2c 2d
Z[i) a+ bi | yes yes no O
Z3(i] a+ biia b€ 7, ] yes yes  yes I
Z1V2) a+bV2,a,bEZ | yes yes no O
01V2) a+bV2abe(Q | yes yes yes O
YA WA (a, b) (1, 1) yes no no O
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