Corollary: of t > 0, then exists $n_t \in \mathbb{N}$ such that $0 \le \frac{1}{n_L} \le t$.

Pf. Since inf of in : n EIN? = o and £70,

then t is not a lown bound for the set

of in EIN? To, themenists nt EIN such

that $0 < \frac{1}{n!} < t$.

Corollary: of 470, then endst my EINsuch that my-1 < 4 < my.

Pf: Consider a set Ey=1mEIN: y < m3

By Archimedian property for y EIR, there
exists a natural number in such that y < m.
So the Set Ey is nonempty and it is a
subset of IN, the Set of hateral numbers.

By well-oredning principle Ey has a hast element say hy, shen y < ny [: ny & Ey]

Also, since hy -1 < hy & o hy-1 & Fy

as hy is the least element of Ey.

i hy-1 \le y < hy.

2.4.7 Theorem There exists a positive real number x such that $x^2 = 2$.

Proof. Let $S := \{s \in \mathbb{R}: 0 \le s, s^2 < 2\}$. Since $1 \in S$, the set is not empty. Also, S is bounded above by 2, because if t > 2, then $t^2 > 4$ so that $t \notin S$. Therefore the Supremum Property implies that the set S has a supremum in \mathbb{R} , and we let $x := \sup S$. Note that x > 1.

We will prove that $x^2 = 2$ by ruling out the other two possibilities: $x^2 < 2$ and $x^2 > 2$. First assume that $x^2 < 2$. We will show that this assumption contradicts the fact that $x = \sup S$ by finding an $n \in \mathbb{N}$ such that $x + 1/n \in S$, thus implying that x is not an upper bound for S. To see how to choose n, note that $1/n^2 \le 1/n$ so that

$$\left(x + \frac{1}{n}\right)^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} \le x^2 + \frac{1}{n}(2x + 1).$$

Hence if we can choose n so that

$$\frac{1}{n}(2x+1) < 2 - x^2,$$

then we get $(x+1/n)^2 < x^2 + (2-x^2) = 2$. By assumption we have $2-x^2 > 0$, so that $(2-x^2)/(2x+1) > 0$. Hence the Archimedean Property (Corollary 2.4.5) can be used to obtain $n \in \mathbb{N}$ such that

$$\frac{1}{n}<\frac{2-x^2}{2x+1}.$$

These steps can be reversed to show that for this choice of n we have $x + 1/n \in S$, which contradicts the fact that x is an upper bound of S. Therefore we cannot have $x^2 < 2$.

Now assume that $x^2 > 2$. We will show that it is then possible to find $m \in \mathbb{N}$ such that x - 1/m is also an upper bound of S, contradicting the fact that $x = \sup S$. To do this, note that

$$\left(x - \frac{1}{m}\right)^2 = x^2 - \frac{2x}{m} + \frac{1}{m^2} > x^2 - \frac{2x}{m}.$$

Hence if we can choose m so that

$$\frac{2x}{m} < x^2 - 2,$$

then $(x-1/m)^2 > x^2 - (x^2 - 2) = 2$. Now by assumption we have $x^2 - 2 > 0$, so that $(x^2 - 2)/2x > 0$. Hence, by the Archimedean Property, there exists $m \in \mathbb{N}$ such that

$$\frac{1}{m} < \frac{x^2 - 2}{2x}.$$

These steps can be reversed to show that for this choice of m we have $(x - 1/m)^2 > 2$. Now if $s \in S$, then $s^2 < 2 < (x - 1/m)^2$, whence it follows from 2.1.13(a) that s < x - 1/m. This implies that x - 1/m is an upper bound for S, which contradicts the fact that $x = \sup S$. Therefore we cannot have $x^2 > 2$.

Since the possibilities $x^2 < 2$ and $x^2 > 2$ have been excluded, we must have $x^2 = 2$.

Q.E.D.