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. Prove the sum ru
49, If f(x.v) is continuous for all x # 0 and y # 0, and 57. Prc
f(0,0) =0.then  lim  fx,y) =0 im L +glon ) =L+ i
i (v M . i N Jim "
50. If f(x) and g(v) are continuous functions of x and y, respec- () (o
tively, then ‘ o l.
' - I = lim f(x,y)anc = im0
hix, v) = f(x) 4+ g(v) where L = £ y) -+ (e 58) )=ty 80 ),

is a continuous function of x and v.

o Use the €-8 definition of limit to verify the limit statements given in

Problems S1-54.

8. A function of (two variables [ (x, y) may be continyqyg in e
o separate variable at v = Xo and y = yo Without being itself
L‘()Illillll(lll.\‘ at (xo, yo). Let f(x, y) be defined by

1. lim Qv 4+3v) =0 82 lim (v + y) =0
- W)= 00 A v 0m '\,y )
- % g v = y2 = for (x, y) # (0, 0)
3 lim '—_T— =0 84, limI | 4‘»»‘ \ =2 fx,y) = x24y
A= x4 ¥y (A V) o * r .
. or(x,y)=1(0,0
§8. Prove that if { is continuous and f(a, b) > 0. then there ex- 0 (x,y) =(0,0)

1sts a d-neighborhood about (a. b) such that f(x, y) > 0 for

every point (x. v) in the neighborhood.

§6. Prove the scalar muluple rule:

im  laflx. ) =a

(L V)= (xp. W)

Let g(x) = [(x,0)and h(y) = [(0, y). Shqw that both gy
and l/:(‘\') are continuous at 0 but that f(x, y) is not continugy

Iim f(x.y) at (0, 0).

L= (9. W)

11.3 Partial Derivatives

IN THIS SECTION

partial differentiation, partial derivative as a slope, partial derivative as a rate, higher
order partial derivatives

PARTIAL DIFFERENTIATION

It is often important to know how a function of two vari

ables changes with respect to
one of the variables. For example,

according to the ideal gas law, the pressure of a gas
is related to its temperature and volume by the formula P = k—T, where £ is a constant.
If the temperature is kept constant while the volume is allowe‘é to vary, we might want
to know the effect on the rate of change of pressure. Similarly, if the volume is kept
constant while the temperature is allowed (o vary, we might want to know the effect on
the rate of change of pressure.

The process of differentiatin
its variables while keeping the o
and the resulting derivative is a

Recall that the derivative o
limit of a difference quotient, n

g a function of several variables with respect to one of

ther variable(s) fixed is called partial differentiation.
partial derivative of the function.

f a function of single variable f is defined to be the
amely,
£/ = tim LE AN - Fo)

Av—() Ax

Partial derivatives with respect to x of Y are defined similarly
< .




partial Derivatives of a
function of Two Variables

11.3  Partial Derivatives 711

Iz = J(x, y), then the partial derivatives of J with respect to x and y are the
functions f, and Jfy, respectively, defined by

SO+ Ax, y) = f(x,y)
Ax

(X, y) = lim
Jaxyy) Jim

and
S,y + Ay) = f(x,y)
Ay

fv(xs y) s AI)IJTO

provided the limits exist.

% What This Says  For the partial differentiation of a function of two vari-
ables, z = f(x, y), we find the partial derivative with respect to x by regarding
Y as constant while differentiating the function with respect to x. Similarly, the
partial derivative with respect to y is found by regarding x as constant while
differentiating with respect to Y.

EXAMPLE 1 Partial derivatives
If f(x,y) =xy +x%)% find: a. f, b £

Solution
a. For f,, hold y constant and find the derivative with respect to x:

frx,y) =32y + 2x)?
b. For fy, hold x constant and find the derivative with respect to y:
frlx,y) =x3+2x2y o

Several different symbols are used to denote partial derivatives, as indicated in the
following box.

Alternative Notation for Partial Derivatives
For z = f(x, ), the partial derivatives f, and fy are denoted by
of 0z 0 Y
f\'(x’ y) — bj = g = 5:\:f(x7 .V) =% = D\(.f)
and . y ;
af 0z 0 .
, )= = —=—f(x,¥) =2, = D,(f)
[y, y) 3% = By ayf (x, y) =2y = Dy(f
The values of the partial derivatives of f(x, y) at the point (a, b) are denoted by
of 0
(—)i = fi(a,b) and —/i = fy(a, b)
dx (a,b) y (a,b)

EXAMPLE 2 Finding and evaluating a partial derivative
Letz = x? sin(3x + y’)-

Evaluate 4z b. Evaluate z, at (1, 1).
" dx

(/3,0)



Y Chapter 11 Partial Differentiation

TECHNOLOGY NOTE

Solution
0z

ox

a. 2x sin(3x + ‘\"‘) + x2cos(3x + ,\"‘)(3)

2x sin(3x + ) + 3x? cos(3x + yh

\(7/’3.0\

= x?cos(3x

Thus,
0z
() \

b.

<y

(1,1

= 2<§)sinn +3 (%)20037{ = %7{(0) + E;(—l) = T

) = 3(1)2(])2cos(3+ 1) =3cos4

2

+yH)(3y?) = 3x2y? cos(3x + y*) so that

Finding partial denivatives using luhnoloﬂ\’ is a natural extension of the way you have been finding other derivatives. The
general format for most calculators and computer programs is the same: derivative operator, function, variable of differentia-
tion. Evaluating the partial derivative is then acaomphshed by usmg the evaluate feature. For example, Figure 11.17a displays
the computation of the partial derivative of f(x,y) = \ y e P y with respect to x from Example 1, while Figure 11.17b

displays the evaluation of the partial derivative of z = x? sin(3x +y*) with respect to x at the point (3

, 0) found in Example 2.

Fi—wC__ Fov ) _Faw Y_Fuv Y FS _ F&
lv = |Rlgebra|Czlc|Qther|Prgnll|Clear a-z..

"'

i I Fzr
- E[ﬂlgebrd Calc

Fur
Ot.her

Fr-Fggm I DYC 1 t»:-arErs a-z.. ]

. \ )
'%[Xz'Slh(E'x + HEJ] | X== and u=0
2
d(x‘39+x‘29"‘2 2 XD d{x*2sin{Ix+y*3>,x) I x=ns3 and.
THIN RRL_KUTD FUNC 1/30 FRIN RAD ALTO FUNC 1./30
a. The partial derivative %(.\% +x%y?) b. The partial derivative a—ax(x2 sin (3x + y%)) evaluated at (%. 0)
Figure 11.17  Computing partial derivatives with technology
EXAMPLE 3 Partial derivative of a function of three variables
Let f(x,y,2) = x> + 2xy? + yz*; determine: a. f, b. f, c. f.
Solution
a. For fy, think of f as a function of x alone with y and z treated as constants
fe(x, y,2) = 2x + 22
WARNING In f(x.y,2),2isan b. f;\\(x’ v, 2) = 4_\‘)17_'_ Z3
independent variable. ¢ f:(x,y,2) =3yz*

EXAMPLE 4 Partial derivative of an implicitly defined function

Let z be defined implicitly as a function of x and v by the equation

2 3
X2+ yz

Determine dz/dx and 9z/dy.



1.3 Partial Derivatives 713
Solution

erentiate implicity with respect (o x, tr ating y as a constant;

' y 0z 0z
252 4 x* = 4 3yz} — = |
X x
Then solve thi lon for
1solve this equation for
X
02 | —~2xz

Sirmi ' Dy x?4 i%lvzi
Stimilarly, holding x constant and differentiating implicitly with respect to y, we find

0z 507
= 4 P 3yt — =0
0y 0y
SO that
0z e

dy  x?+3yz?
PARTIAL DERIVATIVE AS A SLOPE

A useful geometric interpretation of partial derivatives is indicated in Figure 11.18. In
Figure 11.18a, the plane y =y intersects the surface z = f(x, y) inacurve C parallel
to the xz-plane. That is, C is the trace of the surface in the plane y = yo. An equation
for this curve is z = [ (x, yo), and because y is fixed, the function depends only on
x. Thus, we can compute the slope of the tangent line to C at the point P(xq, Yo, Z0)
in the plane y = yy by differentiating f (x, yo) with respect to x and evaluating the
derivative at x = xo. That is, the slope is fx (xo, Yo), the value of the partial derivative
fx at (xq, yo). The analogous interpretation for f,(xo, yo) is shown in Figure 11.18b.

z

Tangent line
Tangent line Curve C

z = [(x,y))

Surface  *
z=[(x,y)

Surface

z=f(xy)

7 Plane “Plane
Y=Y \ X=X
X0 - 0
G Yo, <x

Xy Yo .‘ e
YIS IS
The tangent line in the plane y = ¥y b, The tangent line in the plunc) X=X
" to the uirvu (" at the point I has (o the curve D at the point 2 has
slope 1, (%0, Y0)- slope /, (xg, Yo)-

Figure 11.18 Slope interpretation of the partial derivative

rtial ative as the Slope of a Tangent Line ' r Ly
o tine parallel to the xz-plane and tangent l(‘) the surface 2 = .,/ Ulv ‘l) "_’_‘wc
The ““,b pe™ 70) has slope f(xp, Yol ILikewise, the tangent line to the SUFTE
li:)'ll’:‘ lll::n(lx::]:/z(,:n"ullul (0 the yz-plane has slope Sy Xy o).
d ) :

|
|
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EXAMPLE 5 Slope of a line parallel to the xz-plane

Find the slope of the line that is parallel to the xz-plane and tangent to the surf;
z = X4/x § y at the point P(1, 3, 2). g

Solution

If f(x,y) =xxFy=ux(x-+y)/2 then the required slope is f,(1,3).

. NEA ™ - 1/2 _ X
filx, y) = (5><A )7 A+ + D+ D= st Va

1 9
Thus, fi(1,3) = ——++/1+3=-.
: 2J/T+3 4 R
PARTIAL DERIVATIVE AS A RATE

The derivative of a function of one variable can be interpreted as a rate of change, and
the analogous interpretation of partial derivative may be described as follows.

Partial Derivatives as Rates of Change ﬁ

As the point (x, y) moves from the fixed point Py(xo, yo), the function f(x, y)
changes at a rate given by fy(xo, Yo) in the direction of the positive x-axis and
by fy(xo, yo) in the direction of the positive y-axis.

EXAMPLE 6 Partial derivatives as rates of change

In an electrical circuit with electromotive force (EMF) of E volts and resistance R
ohms, the current is I = E /R amperes. Find the partial derivatives d//9E and 01/dR
at the instant when E = 120 and R = 15 and interpret these derivatives as rates.

Solution
Since I = ER™!, we have

ol ol
— = R™! d 2 — _ER™
E an oR = ER
and thus, when E = 120 and R = 15, we find that
ol ol
— =157~ 0.0667 d — = (12 2~ —(0.5333
3E an 3R (120)(15)

This means that if the resistance is fixed at 15 ohms, the current is increasing (becaus
the derivative is positive) with respect to voltage at the rate of 0.0667 ampere pef
volt when the EMF is 120 volts. Likewise, with the same fixed EMF, the current 1S
decreasing (because the derivative is negative) with respect to resistance at the rat¢ of
0.5333 ampere per ohm when the resistance is 15 ohms. o

HIGHER-ORDER PARTIAL DERIVATIVES

The partial derivative of a function is a function, so it is possible to take the pﬂrfld‘:
derivative of a partial derivative. This is very much like taking the second deflvf‘['vcl
of a function of one variable if we take two consecutive partial derivatives with resp?a
to the same variable, and the resulting derivative is called the second-order Par,"a_
derivative with respect to that variable. However, we can also take the parl.ial de‘f IZC
tive with respect to one variable and then take a second partial derivative with fCSPva_
to a different variable, producing what is called a mixed second-order partial derl’r
tive. The higher-order partial derivatives for a function of two variables fly)?
denoted as indicated in the following box:
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Given z = f(x, y). 1

Second-order partial derivatives

?*f 9 [of '
rrohalry: (—,;) = (s = S
02f 9 [af :
5= 35 () = = I

Mixed second-order partial derivatives

2f 0 [(af Sy
dxdy ax (;)y) =:(fy): = fnx
8% Y8 (f\ .

oyodx R dy <(’)x) = (f)y = fry

WARNING

The notation fy, means that we differentiate first with respect to x and then with
82

respect to y, while means just the opposite (differentiate with respect fo y first and then
)

with respect to x).

EXAMPLE 7 Higher-order partial derivatives of a function of two variables
For z = f(x,y) = 5x* — 2xy + 3y>, determine these higher-order partial derivatives.

2 82 62
K b f c gz

. — . ; d. 32
: dxay dyox 9x?2 F2y(3:2)
Solution
a. First differentiate with respect to y; then differentiate with respect to x.
0
= e Tt 9y?
dy
8%z a [0z d
=—(—=)=—=(-2x+9H=-2
dxdy  ox (8y> 8x( *+957)
b. Differentiate first with respect to x and then with respect to y:
0
—Ji = 10x — 2y
ax
22f a [aof 0
/ = — —f = —(10x —2y) = -2
dyox  dy \0ox ay

¢. Differentiate with respect to x twice:

0%z 9 [0z 9
—=—— = —({0x —2y) =
dx2  ox ( ) 8x( ¥ =2y) =10

ax
d. Evaluate the mixed partial found in part b at the point (3, 2):
‘/:\‘_\'(31 2) = -2 2]
X 3%z 82z . L
Notice from parts a and b of Example 7 that = . This equality of

dxdy  dyox ;
mixed partials does not hold for all functions, but for most functions we will encounter, ‘{
it will be true. The following theorem provides sufficient conditions for this equality "

{0 occur. \
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THEOREM 11.1 Equality of mixed partials o
If the function f(x. v) has mixed second-order partial derivatives f,, and Fye th

Al ar
vo), then ¢

continuous in an open disk containing (Xo.

Fur (0, 30) = fr(Xo, 30)

Proof  This proof is omitted. 3

EXAMPLE 8 Partial derivatives of functions of two variables

. 2 y
: -, . . - y) = x2ye”.
Determine fiy, fyv, fuvs and fixy, where f(x,y) = x7)

Solution
We have the partial derivatives

9 v 2 "
fy =x“e +x%ye’

I =2xy8’
The mixed partial derivatives (which must be the same by the previous theorem) are

f\“\‘ = (f\‘)_\' = Jng” & 2.1'_\'3"“ f\‘.\‘ = (f\)r = 2xe’ + ZX_VE‘Y

Finally, we compute the second- and higher-order partial derivatives:

f.\'.\' = (f\)\ = 2}76"‘ and f\'.\‘_\‘ = (f\'.\').\' = 2¢” = 2)_6)‘ 2]

An equation involving partial derivatives is called a partial differential equation.
An important partial differential equation is the diffusion or heat equation

aT ,3°T

— ="

ot 0x?2
where 7 (x. 1) is the temperature in a thin rod at position x and time 7. The constant ¢
is called the diffusiviry of the material in the rod. In the following example, we verify
that a certain function satisfies this heat equation.

EXAMPLE 9 Verifying that a function satisfies the heat equation

X ‘ a2
Verify that 7' (x, 1) = e~ cos — satisfies the heat equation, a—T = c? d 7;
¢ ot ox?2
Solution
or x
9t = —€ " CO0S ;
and
()ZT _ ] 1 X
o2~ gx ¢ ?)
g )
= ——5e€ ' Cos —
¢
Thus, T satisfies the heat equation (L—T o (.ZE "
ot ax2’

Analogous definitions can be m
example,

o= o8 [i ("_f)} i F a0 <ﬂ>]
073 dz | dz \ 0z Jxyz = m =5 dy \ox

ade for f ; : s ohles. For
ade for functions of more than two variables. F€

|

—
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EXAMPLE 10 Higher-order partial derivatives of a function of several

variables

B‘y direct caleulation, show that Jyye = fyzx = [oyx for the function
S, y,2) = xXyz 4 a2yt

Solution

First, compute the partials:

Jo(x, v, 2) = yz 4 2xy2*
fo(x,y,z) = xz 4+ 3x%y* 7

Jo(x, v, 2) = xy + 4x%y2?

Next, determine the mixed partials:

Feor(x,9,2) = (yz + 2xy°2%), = z + 6xy*z*
Sz, y,2) = (xz+ 3x2yzz4)z =x+ l2x2y2z3
folx,y,2) = (xy +4x2y323)y = x + 12x%y*7?
Finally, obtain the required higher mixed partials:
Feye(%, 9, 2) = (2 + 6xy°2%), = 14 24xy°2°
frax,y,2) =&+ 12x2yzz3),\. =1+ 24xy2z3
Foyx (.9, 2) = (x + 12x%%2%), = 1 + 24xy%2? i

11.3 PROBLEM SET

o 1. WHAT DOES THIS SAY? What is a partial derivative?

2. Exploration Problem Describe two fundamental interpretations
of the partial derivatives f,(x, y) and f,(x, ).
Determine f,, f,, fex, and fy, in Problems 3-8.
iy =xP+xty+xy2+y?
4. f(z\'.)’) =x+xy+ )))3
5' f(/\ y) = {
y
T f(x,y) = Inx + 3y)

6. f(X, y) = xe"
8. f(x,y)=sinxy
Determine foand f, in Problems 9-16.

9 a, f(x,y) = (sin x?)cosy b. Sfx,y) = sin(x? cos y)
0.2 f(x,y) = (sin JX)Iny? b fx,y) = sin(4/x In y?)
L 1, y) = /352 + 5 12. f(x,y) =xy*In(x +)

3. T(x,y) = x2e* Y cos y 14. f(x,y) = xy*tan”'y
5. r(x, y) =sin"'(xy) 16. f(x,y) = cos ' (xy)
Il)m*rmine fo fy, and f. in Problems I 7-22.
1. r(r S
g E2) = xy? 4y +xy2

. ’ (X‘ Y, 2) = X_\’L‘:
1, TGy, 5y =% + 52

b4

20' ./‘(z\“ y Z) — Xy + Yz

21. - X2z
2 Ty, 2) = In(x + ¥y +27)

2 fix At sin(pnear)

0z 0z
In Problems 23-28, determine e and 8—7 by differentiating im-
% y

plicitly.
.2 2 2
23. %—yz-{-%:l 24. 302 +4y* 422 = 5

25. 3x2y +y3z -2 =1
27. /x + y* +sinxz =2
28. In(xy +yz+xz) =5 (x>0,

26. P —xy? 4yt -7 =4

y>0, z>0)

In Problems 29-32, compute the slope of the tangent line to the
graph of [ at the given point Py in the direction parallel to

a. the xz-plane b. the yz-plane

29. f(x,y) =xy*+x3y; Py(l, =1, =2)
x4 y?

30. flx,y) = s Po(l, =1, =2)

31 f(x,y) = x*sin(x + y); Py (%, %,0)
32, f(x,y) =xIn(x + y*); Py(e, 0, e)

o 33. Determine f, and fy for

S(x,y) =/ (12 + 2t + D) dt

Hint: Review the second fundamental theorem of calculus.
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Determine f, and f, for

50

f@dng"w+ﬁom

Hint: Review the second fundamental theorem of calculus.

A function f(x, ) is said to be harmonic on the open set S if fex
and fyy are continuous and

f\'.\‘ =} f_\'_\- =0

throughout S. Show that each function in Problems 35-38 is har-
monic on the given set.

35.
36.

37.
38.
39.
40.
41.
42.

43.

44.

f(x,y) =3x%y — y3; Sis the entire plane.

f(x.y) = In(x® 4+ y?); S is the plane with the point (0, 0)
removed.

f(x,y) =e"siny; S is the entire plane.

f(x,y) =sinx coshy; S is the entire plane.

For f(x,y) = cosxy?, show f, = fyr.

For f(x,y) = (sin® x)(sin y), show fi, = fi,.

Find fi.y — fyz., where f(x, y, z) = x? 4+ y*> — 2xy cos z.

Two commodities Q| and Q, are said to be substitute com-
modities if an increase in the demand for either results in
a decrease in the demand of the other. Let D;(p;, p,) and
D,(p,, p>) be the demand functions for Q| and Q,, respec-
tively, where p; and p, are the respective unit prices for the
commodities.

aD d
a. Explain why 5—1 <0and —2 < 0.

Pi p2
aD oD
b. Are Land = positive or negative? Explain.
apg 8p,

c. Give examples of substitute commodities.

Two commodities @ and Q, are said to be complementary
commodities if a decrease in the demand for either results in
a decrease in the demand of the other. Let D, (p,, P2) and
Dy (py, p2) be the demand functions for Q; and Q», respec-
tively, where p; and p; are the respective unit prices for the
commodities.

) aD oD
a. Is it true that 3—' < 0 and 8—2 < 0? Explain.

P1 P2
. D aD
b. Determine whether L and —2 are positive or negative?
31)2 ()[)l 2 ’

Explain.
c¢. Give examples of complementary commodities.

Modeling Problem  The flow (in cm?/s) of blood from an artery
into a small capillary can be modeled by

2
CTX~

Vy-z

F(x,y,z) =

for constant ¢ > 0, where x is the diameter of the capillary, y
is the pressure in the artery, and z is the pressure in the czl[;-
illary. Compute the rate of change of the flow of blood with
respect (0

a. the diameter of the capillary

b. the arterial pressure

c. the capillary pressure

45.

46.

47.

48.

49,

50.

Modeling Problem Biologists have studied the OXve
*JEC
I()u”d |

umption of certain furry mammals. They haye
‘e mammal’s body temperature is 7 dkglcc.\(ckiu\ " g
e . . §
perature is 1 degrees Celsius, and the mammgy| does p, Clog,
. —— . o v ) We
< alative OXygen consumpton can be modor. M
then its relative OXYg 10deleg by

cm,t,T)=0o(T —t)m "

Cop

(ke/h) where m is the mammal’s mass (in kg) ang
2 ate (1 o7 g
ph?sical constant. Compute the rate (rounded “\,u(\a
. o SN O ; . o1,
mal places) at which the oxygen consumption Changey Wiy
S Wi

respect to
a. the massm

b. the body temperature T
¢. the fur temperature /

Modeling Problem A gas that gathers on a surface a cop.
densed layer is said to be adsorbed on the surface, and (he
surface is called an adsorbing surface. The amount of 2as4(.
sorbed per unit area on an adsorbing surface can be modeleg
by S(p, T, h) = ape/®D

where p is the gas pressure, 7' is the temperature of the gy
is the heat of the adsorbed layer of gas, and a and b are phys-
ical constants. Compute the rate of change of § with respect
to

a. p b. h c. T

The ideal gas law says that PV = kT, where P is the pres-
sure of a confined gas, V' is the volume, 7" is the temperature,
and k is a physical constant.

)V JP

a. Calculate (—. b. Calculate :
aT (
aP oV oT B

¢. Showthat — . — . — =

av. aT oP

Ata certain factory, the output is given by the production func

tion Q = 120K°L%/ where K denotes the capital invest

ment (in units of $1,000) and L measures the size of the labor
force (in worker-hours).

a. Determine the marginal productivity of capital, 00/K,
and the marginal productivity of labor, dQ /L.

b. Determine the signs of the second-order partial derivatives
Ql Q/9L* and 3> Q /9 K2, and give an economic interprel
tion.

The temperature at a point (x, y) on a given metal plate in he

xy-plane is determined according to the formula ,

T(x,y) = x* +2xy2 4 degrees. Compute the rate a whic

the temperature changes with distance if we start at (2, 1) ®

move

a. parallel to the vector J

b. parallel to the vector i

In physics, the waye equation is

322 2 821

—_— =

ar? dx?
and the heqy equation is

9z , 9%z

A, =€ 23

at dx?

, satish®

In e: . )
thee\‘:/Ch of the following cases, determine whether
dVe€ equation, the heat equation, or neither.
" —_— ! . X e
A z=¢ (sm —~ +cos f) b. z = sin3ct 1D 3x
p

C. Z =5sinS5¢; Cos 5x




