Example 11. The molar conductances at infinite dilution for sodium acetate and hydrogen chloride at 30°C are 91.0×10^{-4} and 426.16×10^{-4} S m² mol⁻¹, respectively. Also for H⁺ ion in HCl, t_{+} is 0.821 and for CH₃COO-ion in CH₃COONa, t_{-} is 0.556. Assuming that $t_{\pm} = t_{\pm}^{\circ}$, calculate $\Lambda_{\rm m}$ for CH₃COOH.

Solution: We know that, $\lambda_{+}^{\circ} = t_{+}^{\circ}(\Lambda_{m}^{\circ})$ and $\lambda_{-}^{\circ} = t_{-}^{\circ}(\Lambda_{m}^{\circ})$ (Eqs. 11 and 12)

Assuming that

 $t_{+}^{\circ} = t_{+}$ and $t_{-}^{\circ} = t_{-}$, from the data on HCl, we have

 $\lambda_{+}^{\circ} = 0.821 \times 426 \cdot 16 \times 10^{-4} = 349 \cdot 88 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}$

From the data on CH₃COONa,

 $\lambda_{-}^{\circ} = 0.556 \times 91.0 \times 10^{-4} = 50.60 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}$

Hence, for CH₃COOH, $\Lambda_{\rm m}^{\circ} = \lambda_{+}^{\circ} + \lambda_{-}^{\circ} = (349.88 + 50.60) \times 10^{-4} \, {\rm S \, m^{2} \, mol^{-1}}$ = 400.48×10⁻⁴ S m² mol⁻¹

= 400.48 × 10 5 m² mol²

Example 12. At 25°C, the degree of dissociation (α) of pure water is 1.90×10^{-9} . Calculate the molar conductance (Λ_{m}) and specific conductance (κ) of water at this temperature. The molar ionic conductances of H⁺ and OH⁻ ions are 349.83×10^{-4} and 198.50×10^{-4} S m² mol⁻¹, respectively.

Solution: From Kohlarusch's law.

$$\Lambda_{\text{mH}_2\text{O}}^{\circ} = \Lambda_{\text{H}^+}^{\circ} + \lambda_{\text{OH}^-}^{\circ} = (349 \cdot 83 + 198 \cdot 50) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1} = 548 \cdot 33 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

The degree of dissociation of a weak electrolyte is given by $\alpha = \Lambda_m / \Lambda_m^o$ (Eq. 4)

$$\therefore \qquad \Lambda_{m} = \alpha \Lambda_{m}^{\circ} = (1.90 \times 10^{-9})(548.33 \times 10^{-4} \, \text{S m}^{2} \, \text{mol}^{-1}) = 1.401 \times 10^{-10} \, \, \text{S m}^{2} \, \, \text{mol}^{-1}$$

Further, $\Lambda_{\rm m} = \kappa/c$ (Eq. 3)

In this case, $c = 1000 \text{ g dm}^{-3}/18 \text{ g mol}^{-1} = 55.56 \text{ mol dm}^{-3} = 55.56 \times 10^3 \text{ mol m}^{-3}$

 $\kappa = c\Lambda_{\rm m} = (55.56 \times 10^3 \text{ mol m}^{-3}) (1.041 \times 10^{-10} \text{ S m}^2 \text{ mol}^{-1}) = 5.78 \times 10^{-6} \text{ S m}^{-1}$

Example 9. For the strong electrolytes NaOH, NaCl and BaCl₂, the molar ionic conductances at infinite dilution are $248\cdot1\times10^{-4}$, $126\cdot5\times10^{-4}$ and $280\cdot0\times10^{-4}$ S m² mol⁻¹, respectively. Calculate Λ_m° for Ba(OH)₂.

Solution: $BaCl_2 + 2NaOH \longrightarrow Ba(OH)_2 + 2NaCl$

Thus, according to Kohlrausch's law of independent migration of ions,

$$\Lambda_{\text{mBa(OH)}_2}^{\circ} = \Lambda_{\text{mBaCl}_2}^{\circ} + 2\Lambda_{\text{mNaOH}}^{\circ} - 2\Lambda_{\text{mNaCl}}^{\circ}$$

$$= (280 + 2 \times 248 \cdot 1 - 2 \times 126 \cdot 5) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$= 523 \cdot 2 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

Example 10. The molar ionic conductance at infinite dilution of lithium halide (LiX) is found to be $89\cdot2\times10^{-4}$ S m² mol⁻¹. What would be the molar ionic conductance of the halide ion if the molar ionic conductance of Li⁺ ion is $38\cdot70\times10^{-4}$ S m² mol⁻¹?

Solution: According to Kohlrausch's law

$$\Lambda_{\rm m}^{\circ} = \lambda_{+}^{\circ} + \lambda_{-}^{\circ}$$

$$\lambda_{-}^{\circ} = \Lambda_{\rm m}^{\circ} - \lambda_{+}^{\circ} = (89.20 - 38.70) \times 10^{-4} = 50.5 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}$$

Example 5. The specific conductance of 0.01 M solution of acetic acid was found to be 0.0163 S m⁻¹ at 25°C. Calculate the degree of dissociation of the acid. Molar conductance of acetic acid at infinite dilution is 390.7×10^{-4} S m² mol⁻¹ at 25°C.

Solution: $\kappa = 0.0163 \text{ S m}^{-1}; \quad c = 0.01 \text{ mol dm}^{-3} = 10 \text{ mol m}^{-3}$ $\Lambda_{\text{m}} = \frac{\kappa}{c} = \frac{0.0163 \text{ S m}^{-1}}{10 \text{ mol m}^{-3}} = 16.3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$ $\Lambda_{\text{m}}^{\circ} = 390.7 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1} \quad (\text{given})$ $\alpha = \frac{\Lambda_{\text{m}}}{\Lambda_{\text{m}}^{\circ}} = \frac{16.3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}}{390.7 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}} = \mathbf{0.0472}$

Example 13. The molar ionic conductance at infinite dilution of silver ions is 61.92×10^{-4} S m² mol⁻¹ at 25° C. Calculate the ionic mobility of silver ions at 25°C at infinite dilution.

Solution: $\lambda_{+}^{\circ} = 61.92 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}$ $u_{+}^{\circ} = \lambda_{+}^{\circ} / F$ (Eq. 18) $\therefore \qquad u_{+}^{\circ} = \frac{61.92 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}}{96485 \text{ C mol}^{-1}}$

Example 14. A dilute solution of potassium chloride was placed between two platinum electrodes 10.0 cm apart, across which a potential of 6.0 volts was applied. How far would the K⁺ ion move in 2 hours at 25° C? Molar ionic conductance of K⁺ ion at infinite dilution at 25° C is known to be 73.52×10^{-4} S m² mol⁻¹

Solution: Molar ionic conductance of K^+ ion at infinite dilution = 73.52×10^{-4} S m² s⁻¹

 $= 6.417 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$

$$u_{+}^{\circ} = \lambda_{+}^{\circ} / F$$

$$u_{+}^{\circ} = \frac{73 \cdot 52 \times 10^{-4} \text{ S m}^{2} \text{ mol}^{-1}}{96493 \text{ C mol}^{-1}}$$

$$= 7 \cdot 619 \times 10^{-4} \text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}$$
(c. C = V S s)

Potential gradient in this case = $6.0 \text{ volts/}10 \text{ cm} = 0.6 \text{ volt cm}^{-1} = 0.6 \times 10^2 \text{ volt m}^{-1}$

- ∴ Speed of K⁺ ion = 7.619×10^{-8} m² s⁻¹ volt⁻¹× 0.6×10^{2} volt m⁻¹ = $7.619 \times 10^{-8} \times 0.6 \times 10^{2}$ m s⁻¹
- .. Distance moved by K⁺ ion in 2 hours = $7.619 \times 10^{-8} \times 0.6 \times 10^{2}$ m s⁻¹ (2×60×60 s) = 3.291×10⁻² m

Example 15. Calculate the molar conductance at infinite dilution of an aqueous solution of NaCl at room temperature, given that the mobilities of Na⁺ and Cl⁻ ions at this temperature are $4\cdot26\times10^{-8}$ and $6\cdot80\times10^{-8}$ m² V⁻¹ s⁻¹, respectively.

Solution: According to Eq. 18,

$$\chi_{+}^{\circ} = Fu_{+}^{\circ}$$
= (96493 C mol⁻¹) (4·26×10⁻⁸ m² V⁻¹ s⁻¹) = 41·10×10⁻⁴ S m² mol⁻¹

C = A s = V S s

···

PRINCIPLES OF PHYSICAL CHEMISTRY

$$\lambda_{-}^{\circ} = (96493 \text{ C mol}^{-1}) (6.80 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}) = 65.61 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$\Lambda_{\text{m}}^{\circ} = \lambda_{\text{Na}}^{\circ} + \lambda_{\text{Cl}}^{\circ} = (41.10 + 65.61) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$= 106.71 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

Example 18. The molar conductances of sodium acetate, hydrochloric acid and sodium chloride at infinite dilution are 91.0×10^{-4} , 426.16×10^{-4} and 126.45×10^{-4} S m² mol⁻¹, respectively, at 25°C. Calculate the molar conductance at infinite dilution for acetic acid.

Solution:
$$\Lambda_{\text{mCH}_3\text{COONa}}^{\circ} = \lambda_{\text{CH}_3\text{COO}^-}^{\circ} + \lambda_{\text{Na}^+}^{\circ} = 91 \cdot 0 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$\Lambda_{\text{mHCl}}^{\circ} = \lambda_{\text{H}^+}^{\circ} + \lambda_{\text{Cl}^-}^{\circ} = 426 \cdot 16 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$\Lambda_{\text{mNaCl}}^{\circ} = \lambda_{\text{Na}^+}^{\circ} + \lambda_{\text{Cl}^-}^{\circ} = 126 \cdot 45 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$\lambda_{\text{CH}_3\text{COO}^-}^{\circ} + \lambda_{\text{H}^+}^{\circ} = \lambda_{\text{CH}_3\text{COO}^-}^{\circ} + \lambda_{\text{Na}^+}^{\circ} + \lambda_{\text{H}^+}^{\circ} + \lambda_{\text{Cl}^-}^{\circ} - \lambda_{\text{Na}^+}^{\circ} - \lambda_{\text{Cl}^-}^{\circ}$$
 or
$$\Lambda_{\text{mCH}_3\text{COOH}}^{\circ} = \Lambda_{\text{mCH}_3\text{COONa}}^{\circ} + \Lambda_{\text{mHCl}}^{\circ} - \Lambda_{\text{mNaCl}}^{\circ}$$

$$= (91 \cdot 00 + 426 \cdot 16 - 126 \cdot 45) \times 10^{-4} = 390 \cdot 71 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

Example 19. Calculate the transport numbers of Li⁺ and Br⁻ ions when a current flows through an infinitely dilute aqueous solution of LiBr at 25°C, given the ionic mobilities of Li⁺ and Br⁻ ions at infinite dilution are 4.01×10^{-8} and 8.09×10^{-8} m² V⁻¹ s⁻¹, respectively.

Solution: In this case,
$$u_{+}^{\circ} = 4.01 \times 10^{-8} \text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}$$
 and $u_{-}^{\circ} = 8.09 \times 10^{-8} \text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}$
From Eq. 22, $t_{+}^{\circ} = \frac{u_{+}^{\circ}}{u_{+}^{\circ} + u_{-}^{\circ}} = \frac{4.01 \times 10^{-8} \text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}}{(4.01 + 8.09) \times 10^{-8} \text{ m}^{2} \text{ V}^{-1} \text{ s}^{-1}} = 0.331$
Since $t_{+}^{\circ} + t_{-}^{\circ} = 1$
 $t_{-}^{\circ} = 1 - 0.331 = 0.669$

Example 20. Molar ionic conductances at infinite dilution of Na⁺ and Cl⁻ ions are 50·11×10⁻⁴ and 76·34×10⁻⁴ S m² mol⁻¹, respectively. Calculate the transport numbers of Na⁺ and Cl⁻ ions.

Solution: According to Eq. 20,

$$t_{+}^{\circ} = \frac{\lambda_{+}^{\circ}}{\lambda_{+}^{\circ} + \lambda_{-}^{\circ}} = \frac{50 \cdot 11 \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}}{(50 \cdot 11 + 76 \cdot 34) \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}}$$

$$= \frac{50 \cdot 11 \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}}{126 \cdot 45 \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}} = \mathbf{0} \cdot 396$$

$$t_{-}^{\circ} = \frac{\lambda_{-}^{\circ}}{\lambda_{+}^{\circ} + \lambda_{-}^{\circ}} = \frac{76 \cdot 34 \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}}{(50 \cdot 11 + 76 \cdot 34) \times 10^{-4} \,\mathrm{S} \,\mathrm{m}^{2} \,\mathrm{mol}^{-1}} = \mathbf{0} \cdot 604$$

As can be seen, $t_{+}^{\circ} + t_{-}^{\circ} = 0.396 + 0.604 = 1$

Example 22. The molar conductance of 0.01 M solution of acetic acid was found to be 16.30×10^{-4} S m² mol⁻¹ at 25°C. The molar ionic conductances of hydrogen and acetate ions at infinite dilution are 349.8×10^{-4} and 40.9×10^{-4} S m² mol⁻¹, respectively, at the same temperature. What percentage of acetic acid is dissociated at this concentration?

Solution:

$$\Lambda_{\text{mCH}_3\text{COOH}}^{\circ} = \lambda_{\text{CH}_3\text{COO}^-}^{\circ} + \lambda_{\text{H}^+}^{\circ} = (40.9 + 349.8) \times 10^{-4} = 390.7 \times 10^{-4} \,\text{S} \,\text{m}^2 \,\text{mol}^{-1}$$

$$\alpha = \frac{\Lambda_{\text{m}}}{\Lambda_{\text{m}}^{\circ}} = \frac{16.30 \times 10^{-4} \,\text{S} \,\text{m}^2 \,\text{mol}^{-1}}{390.7 \times 10^{-4} \,\text{S} \,\text{m}^2 \,\text{mol}^{-1}} = \textbf{0.04172}$$

Thus, 0.01 M acetic acid is 4.172 per cent dissociated.

Example 23. At 25°C the specific conductance of carefully distilled water is $58\cdot0\times10^{-7}$ S m⁻¹ and the λ_m° values for H⁺ and OH⁻ ions are $349\cdot8\times10^{-4}$ and $198\cdot5\times10^{-4}$ S m² mol⁻¹, respectively. Assuming that Λ_m differs very little from Λ_m° , calculate the ionic product of water at 25°C.

Solution:
$$H_2O \rightleftharpoons H^+ + OH^-$$

 $K_w = [H^+][OH^-] = (c) (c) = c^2$...(i)

where c is the concentration of each of the ionic speices.

From Kohlraush's law,
$$\Lambda_{\rm m}^{\circ} = \lambda_{\rm H}^{\circ} + \lambda_{\rm OH}^{\circ} = (349 \cdot 8 + 198 \cdot 5) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$= 548 \cdot 3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1} \approx \Lambda_{\rm m} \text{ (Given)}$$
Since $\Lambda_{\rm m} = \kappa/c$

$$c = \kappa/\Lambda_{\rm m} = \frac{58 \cdot 0 \times 10^{-7} \text{ S m}^{-1}}{548 \cdot 5 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}} = 1 \cdot 06 \times 10^{-4} \text{ mol m}^{-3}$$
(Eq. 3)

Hence, from Eq. (i), $K_w = c^2 = (1.06 \times 10^{-7} \text{ mol dm}^{-3})^2 = 1.12 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$

 $= 1.06 \times 10^{-7} \text{ mol dm}^{-3}$

Example 24. The specific conductance of a saturated solution of silver chloride at 25°C after subtracting the specific conductance of water is 2.28×10^{-4} S m⁻¹. Calculate the solubility of silver chloride in grams per dm³ at this temperature. $\Lambda_{\rm mAgCl}^{\circ} = 138.3 \times 10^{-4}$ S m² mol⁻¹ and $M_{\rm (AgCl)} = 143.5$ g mol⁻¹

Solution: $\kappa = 2.28 \times 10^{-4} \text{ S m}^{-1}$

Let the solubility of AgCl be x mol m-3

$$\Lambda_{\rm m} = \kappa/c = 2.28 \times 10^{-4} \text{ S m}^{-1}/x$$

$$2.28 \times 10^{-4} \text{ S m}^{-1}/x = 138.3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$x = \frac{2.28 \times 10^{-4} \text{ S m}^{-1}}{138.3 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}} = 1.648 \times 10^{-2} \text{ mol m}^{-3} = 1.648 \times 10^{-5} \text{ mol dm}^{-3}$$

$$= 143.5 \text{ g mol}^{-1} \times 1.648 \times 10^{-5} \text{ mol dm}^{-3} = 2.365 \times 10^{-3} \text{ g dm}^{-3}$$

Example 25. At 25°C, the specific conductance of a saturated solution of AgCl is 2.68×10-4 S m-1 and that of water with which the solution was made is 0.86×10-4 S m-1. If molar conductances at infinite dilution of AgNO₃, HNO₃ and HCl are, respectively, 133·0×10⁻⁴, 421·0×10⁻⁴ and 426·0×10⁻⁴ S m² mol⁻¹, calculate the solubility of AgCl in grams per dm3 in water at the given temperature.

Ksolution = KAgCl + Kwater ...

 $\kappa_{AgCl} = \kappa_{solution} - \kappa_{water} = (2.68 - 0.86) \times 10^{-4} \text{ S m}^{-1} = 1.82 \times 10^{-4} \text{ S m}^{-1}$

Since AgCl is formed according to the reaction

AgNO₃ + HCl --- AgCl + HNO₃

hence, using Kohlrauch's law,

$$\Lambda_{\text{mAgCl}}^{\circ} = \Lambda_{\text{mAgNO}_3}^{\circ} + \Lambda_{\text{mHCl}}^{\circ} - \Lambda_{\text{mHNO}_3}^{\circ} = (133.0 + 426.0 - 421.0) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

$$= 138.0 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

 $\Lambda_{\rm m}=\kappa/c$ and for the saturated solution of the sparingly soluble salt, $\Lambda_{\rm m}=\Lambda_{\rm m}^{\circ}$

$$c = \frac{\kappa}{\Lambda_{\rm m}^{\circ}} = \frac{1.82 \times 10^{-4} \,\mathrm{S \,m^{-1}}}{138 \cdot 0 \times 10^{-4} \,\mathrm{S \,m^{2} mol^{-1}}} = 1.32 \times 10^{-2} \,\mathrm{mol \,m^{-3}}$$
$$= 1.32 \times 10^{-5} \,\mathrm{mol \,dm^{-3}}$$

Solubility of AgCl = $(1.32 \times 10^{-5} \text{ mol dm}^{-3})$ $(143.5 \text{ g mol}^{-1}) = 1.89 \times 10^{-3} \text{ g dm}^{-3}$

Example 26. Calculate the solubility product of the sparingly soluble salt CaF₂ from the following data: The molar ionic conductances (at infinite dilution) of Ca²⁺ and F⁻ ions are 104×10⁻⁴ and 48×10⁻⁴ S m² mol⁻¹. respectively. The specific conductance of the saturated solution of CaF2 at room temperature is 4.25×10⁻³ S m⁻¹ and the specific conductance of water used for preparing the solution is 2×10⁻⁴ S m⁻¹.

Solution: Let c mol dm⁻³ be the solubility of CaF₂. Accordingly, the solubility equilibrium may be written as

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

Then, at equilibrium, the solubility product of CaF2 is given by

$$K_{4p} = [Ca^{2+}] [F^{-}]^2 = (c) (2c)^2 = 4c^3$$

Specific conductance due to CaF2 alone

= κ (soln) - κ (water) = $(4.25 \times 10^{-3} - 2.0 \times 10^{-4})$ S m⁻¹ = 4.05×10^{-3} S m⁻¹ $\Lambda_{m(CaF_2)}^{\circ} = \lambda_{(Ca^{2+})}^{\circ} + 2\lambda_{(F^-)}^{\circ} = (104 + 2 \times 48) \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1} = 200 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

For saturated solution of sparingly soluble salt, $\Lambda_{\rm m} \approx \Lambda_{\rm m}^{\circ}$. Also, $\Lambda_{\rm m} = \kappa/c$

...(i)

ELECTROCHEMISTRY-I. ELECTROLYTIC CONDUCTANCE AND TRANSFERENCE

821

$$C = \frac{k}{\Lambda_{\rm m}} = \frac{4 \cdot 05 \times 10^{-3} \text{ S m}^{-1}}{200 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}} = 2 \cdot 025 \times 10^{-1} \text{ mol m}^{-3} = 2 \cdot 025 \times 10^{-4} \text{ mol dm}^{-3}$$
Hence, from Eq. (1) $K = -4.3$, $4.0.005 \times 10^{-4}$ and $4.0.005 \times 10^{-4}$ and $4.0.005 \times 10^{-4}$ and $4.0.005 \times 10^{-4}$ mol dm⁻³

Hence, from Eq. (i), $K_{sp} = 4c^3 = 4(2.025 \times 10^{-4} \text{ mol dm}^{-3})^3 = 3.32 \times 10^{-11} \text{ mol}^3 \text{ dm}^{-9}$